Sine and Cosine

Geometry Level 1

I f ( 0 θ < 2 π ) a n d sin θ 2 + 3 cos θ 2 = 1 , w h a t i s t h e v a l u e o f θ ? If\quad (0\le \theta <2\pi )\quad and\\ \sin { \frac { \theta }{ 2 } } +\sqrt { 3 } \cos { \frac { \theta }{ 2 } } =1\\ ,\quad what\quad is\quad the\quad value\quad of\quad \theta ?

0 5 π 3 \frac { 5\pi }{ 3 } 2 π \pi π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Justin Tuazon
Oct 18, 2014

sin θ 2 + 3 cos θ 2 = 1 sin θ 2 + 3 cos θ 2 i s i n t h e f o r m a sin x + b cos x a n d a sin x + b cos x = a 2 + b 2 sin ( x + β ) a = 1 , b = 3 , a n d β = π 3 T h e r e f o r e , π 3 θ 2 + π 3 < 4 π 3 1 + 3 sin ( θ 2 + π 3 ) = 1 2 sin ( θ 2 + π 3 ) = 1 sin ( θ 2 + π 3 ) = 1 2 L e t A = θ 2 + π 3 , π 3 A < 4 π 3 sin A = 1 2 A = 5 π 6 θ 2 + π 3 = 5 π 6 θ = π \sin { \frac { \theta }{ 2 } } +\sqrt { 3 } \cos { \frac { \theta }{ 2 } } =1\\ \sin { \frac { \theta }{ 2 } } +\sqrt { 3 } \cos { \frac { \theta }{ 2 } } \quad is\quad in\quad the\quad form\quad a\sin { x } +b\cos { x } \\ and\quad a\sin { x } +b\cos { x } =\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \sin { (x+\beta ) } \\ a=1,\quad b=\sqrt { 3 } ,\quad and\quad \beta =\frac { \pi }{ 3 } \\ Therefore,\\ \frac { \pi }{ 3 } \le \frac { \theta }{ 2 } +\frac { \pi }{ 3 } <\frac { 4\pi }{ 3 } \\ \sqrt { 1+3 } \sin { (\frac { \theta }{ 2 } +\frac { \pi }{ 3 } } )=1\\ 2\sin { (\frac { \theta }{ 2 } +\frac { \pi }{ 3 } } )=1\\ \sin { (\frac { \theta }{ 2 } +\frac { \pi }{ 3 } } )=\frac { 1 }{ 2 } \\ Let\quad A=\frac { \theta }{ 2 } +\frac { \pi }{ 3 } ,\quad \frac { \pi }{ 3 } \le A<\frac { 4\pi }{ 3 } \\ \sin { A } =\frac { 1 }{ 2 } \\ \quad A=\quad \frac { 5\pi }{ 6 } \\ \frac { \theta }{ 2 } +\frac { \pi }{ 3 } =\frac { 5\pi }{ 6 } \\ \therefore \quad \theta =\pi

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...