If the integral above equals to , where and are coprime positive integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Integration of Trigonometric Functions - Intermediate
Identity 1:
8 sin 4 θ ≡ cos 4 θ − 4 cos 2 θ + 3
Proof:
2 i sin θ ≡ e i x − e − i x
( 2 i sin θ ) 4 ≡ e 4 i x + e − 4 i x − 4 ( e 2 i x + e − 2 i x ) + 6
1 6 sin 4 θ ≡ 2 cos 4 θ − 8 cos 2 θ + 6
8 sin 4 θ ≡ cos 4 θ − 4 cos 2 θ + 3
Identity 2:
cos θ − cos ( θ + 3 π ) − cos ( θ − 3 π ) ≡ 0
Proof:
LHS ≡ cos θ − ( 2 cos θ cos 3 π ) (by Sums to Products)
LHS ≡ cos θ − cos θ ≡ 0 ≡ RHS
Now, let the integral in question be I .
Then from Identity 1, 8 I = ∫ 0 π cos ( 4 x + 4 sin 3 x ) − 4 cos ( 2 x + 2 sin 3 x ) + 3 d x
Break off the constant term and evaluate it directly to obtain
8 I = 3 π + J
Where J = ∫ 0 π cos ( 4 x + 4 sin 3 x ) − 4 cos ( 2 x + 2 sin 3 x ) d x
Use the standard border flip or substitute u = π − x and we have
J = ∫ 0 π cos ( 4 x − 4 sin 3 x ) − 4 cos ( 2 x − 2 sin 3 x ) d x
Add these two together and by direct expansion or Sums to Products, we obtain
J = ∫ 0 π cos 4 x cos ( sin 3 x ) − 4 cos 2 x cos ( 2 sin 3 x ) d x
Break up J along the three intervals: { 0 , 3 π } , { 3 π , 3 2 π } , { 3 2 π , π }
Leave the first interval alone.
For the second interval, substitute u = x − 3 π
J 2 = ∫ 0 3 π cos ( 4 u + 3 4 π ) cos ( 4 sin ( 3 u + π ) ) − 4 cos ( 2 u + 3 2 π ) cos ( 2 sin ( 3 u + π ) ) d x
J 2 = − ∫ 0 3 π cos ( 4 x + 3 π ) cos ( 4 sin 3 x ) − 4 cos ( 2 x − 3 π ) cos ( 2 sin 3 x ) d x
For the third interval, substitute u = x − 3 2 π
J 3 = ∫ 0 3 π cos ( 4 u + 3 8 π ) cos ( 4 sin ( 3 u + 2 π ) ) − 4 cos ( 2 u + 3 4 π ) cos ( 2 sin ( 3 u + 2 π ) ) d x
J 3 = − ∫ 0 3 π cos ( 4 x − 3 π ) cos ( 4 sin 3 x ) − 4 cos ( 2 x + 3 π ) cos ( 2 sin 3 x ) d x
Adding up all three pieces of the integral together and using Identity 2, we find at last that J = 0
Hence, 8 I = 3 π
And finally, we have a + b = 3 + 8 = 1 1