Sine Meets Cosine

Geometry Level 3

x = sin 4 ( π 8 ) + cos 4 ( π 8 ) + sin 4 ( 7 π 8 ) + cos 4 ( 7 π 8 ) . x = \sin^4\left(\frac{\pi}{8}\right)+\cos^4\left(\frac{\pi}{8}\right)+\sin^4\left(\frac{7\pi}{8}\right)+\cos^4\left(\frac{7\pi}{8}\right).

Find the value of 36 x 36x .


The answer is 54.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Victor Loh
Sep 6, 2014

Note that

sin 4 ( π 8 ) + cos 4 ( π 8 ) \sin^4\left(\frac{\pi}{8}\right)+\cos^4\left(\frac{\pi}{8}\right)

= [ sin 2 ( π 8 ) + cos 2 ( π 8 ) ] 2 2 sin 2 ( π 8 ) cos 2 ( π 8 ) =\left[\sin^2\left(\frac{\pi}{8}\right)+\cos^2\left(\frac{\pi}{8}\right)\right]^2-2\sin^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{\pi}{8}\right)

= 1 2 sin 2 ( π 8 ) cos 2 ( π 8 ) =1-2\sin^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{\pi}{8}\right)

= 1 [ 2 sin ( π 8 ) cos ( π 8 ) ] 2 2 =1-\frac{\left[2\sin\left(\frac{\pi}{8}\right)\cos\left(\frac{\pi}{8}\right)\right]^2}{2}

= 1 [ sin ( π 4 ) ] 2 2 =1-\frac{\left[\sin\left(\frac{\pi}{4}\right)\right]^2}{2}

= 1 ( 1 2 ) 2 2 =1-\frac{\left(\frac{1}{\sqrt{2}}\right)^2}{2}

= 1 1 4 = 3 4 . =1-\frac{1}{4}=\frac{3}{4}.

Similarly,

sin 4 ( 7 π 8 ) + cos 4 ( 7 π 8 ) \sin^4\left(\frac{7\pi}{8}\right)+\cos^4\left(\frac{7\pi}{8}\right)

= 1 [ sin ( 7 π 4 ) ] 2 2 =1-\frac{\left[\sin\left(\frac{7\pi}{4}\right)\right]^2}{2}

= 1 ( 1 2 ) 2 2 =1-\frac{\left(-\frac{1}{\sqrt{2}}\right)^2}{2}

= 3 4 . =\frac{3}{4}.

Hence, 36 x = 36 × ( 3 4 + 3 4 ) = 54 36x=36 \times \left(\frac{3}{4}+\frac{3}{4}\right)=\boxed{54} , and we are done. _\square

Isnt sin(pi/8)=1/root2 and isnt (sin pi/8)^4=1/4....Or where am I wrong..? (I'm too sleepy so please help correct me)

Krishna Ar - 6 years, 9 months ago

Log in to reply

Either you are joking or you are joking that sin π 8 = 1 2 \sin \frac{\pi}{8}=\frac{1}{\sqrt{2}}

Dinesh Chavan - 6 years, 9 months ago

Log in to reply

Oh yeah sorry mis read it :( as sin (pi/4)...I told you I was sleepy :(

Krishna Ar - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...