Sine of a matrix

Algebra Level 5

Given that a symmetric 10 × 10 10\times 10 matrix A A has eigenvalues ( 2 π , 4 π , 6 π , 8 π , 10 π , 12 π , 14 π , 16 π , 18 π , 20 π ) (2\pi,4\pi,6\pi,8\pi,10\pi,12\pi,14\pi,16\pi,18\pi,20\pi) what kind of matrix is sin ( A ) + cos ( A ) ? \sin(A)+\cos(A)?

symmetric but not diagnoal cannot be determined diagonal but not identity none of the above identity

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
May 25, 2017

the trick is to write A = S Λ S 1 sin ( A ) = S sin ( Λ ) S 1 a n d cos ( A ) = S cos ( Λ ) S 1 A=S\Lambda S^{-1}\to \sin(A)=S\sin(\Lambda) S^{-1} \ and\ \cos(A)=S\cos(\Lambda)S^{-1} where S S is the eigenvector matrix and Λ \Lambda is the eigenvalue matrix. this can be shown by taking power series for sine and cosine and factoring out S S and S 1 S^{-1} from both sides. notice that since Λ \Lambda is diagonal, cos ( Λ ) = cos [ 2 π 0 0 0 4 π 0 0 0 20 π ] = [ cos ( 2 π ) 0 0 0 cos ( 4 π ) 0 0 0 cos ( 20 π ) ] = I \cos(\Lambda) =\cos \begin{bmatrix} 2\pi &0&\cdots&\cdots&0\\0&4\pi&\cdots&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ \cdots& \cdots&\cdots&\cdots&\cdots\\0&0&\cdots&\cdots&20\pi\end{bmatrix}=\begin{bmatrix} \cos(2\pi) &0&\cdots&\cdots&0\\0&\cos(4\pi)&\cdots&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ \cdots& \cdots&\cdots&\cdots&\cdots\\0&0&\cdots&\cdots&\cos(20\pi)\end{bmatrix}=I so cos ( A ) = S cos ( Λ ) S 1 = S I S 1 = S S 1 = I \cos(A)=S\cos(\Lambda)S^{-1}=SIS^{-1}=SS^{-1}=I similarly sin ( Λ ) = sin [ 2 π 0 0 0 4 π 0 0 0 20 π ] = [ sin ( 2 π ) 0 0 0 sin ( 4 π ) 0 0 0 sin ( 20 π ) ] = 0 \sin(\Lambda) =\sin \begin{bmatrix} 2\pi &0&\cdots&\cdots&0\\0&4\pi&\cdots&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ \cdots& \cdots&\cdots&\cdots&\cdots\\0&0&\cdots&\cdots&20\pi\end{bmatrix}=\begin{bmatrix} \sin(2\pi) &0&\cdots&\cdots&0\\0&\sin(4\pi)&\cdots&\cdots&0\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ \cdots& \cdots&\cdots&\cdots&\cdots\\0&0&\cdots&\cdots&\sin(20\pi)\end{bmatrix}=\textbf{0} so sin ( A ) = S sin ( Λ ) S 1 = 0 \sin(A)=S\sin(\Lambda)S^{-1}=\textbf{0} we have sin ( A ) + cos ( A ) = 0 + I = I \sin(A)+\cos(A)=\textbf{0}+I=\boxed{I}

Since the 10 × 10 10\times10 matrix A A has 10 10 distinct eigenvalues, you do not need to assume that A A is symmetric, since A A is automatically diagonalisable. If A A is symmetric, you can additionally deduce that the matrix S S can be orthogonal, but that is not needed for the proof.

If one or more of the eigenvalues was repeated, symmetry would ensure that the matrix A A was diagonalisable.

Mark Hennings - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...