Sine of Sine inversed

Geometry Level 4

sin ( 1 4 arcsin 63 8 ) \large \sin \left( \dfrac14 \arcsin \dfrac{\sqrt{63}}8 \right)

If the value of the expression above can be expressed as a b \dfrac a{\sqrt b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Gupta
Apr 11, 2016

Let

x = arcsin 63 8 = arccos 1 8 x = \arcsin{\frac{\sqrt{63}}{8}} = \arccos{\frac18}

Using half-angle formula twice:

sin x 4 = 1 cos ( x / 2 ) 2 = 1 1 + cos ( x ) 2 2 \sin{\frac{x}{4}} = \sqrt{\frac{1-\cos{(x/2)}}{2}} = \sqrt{\frac{1-\sqrt{\frac{1+\cos{(x)}}{2}} }{2}}

From the first equation, we have cos x = 1 / 8 \cos{x} = 1/8

So:

sin ( 1 4 arcsin 63 8 ) = 1 9 / 8 2 2 = 1 2 2 = 1 8 \sin{\left (\frac14 \arcsin{\frac{\sqrt{63}}{8}} \right )} = \sqrt{\frac{1-\sqrt{\frac{9/8}{2}} }{2}} = \frac1{2 \sqrt{2}} = \frac1{\sqrt{8}}

Hence, a = 1 a=1 and b = 8 b=8 . a + b = 9 a+b = 9 .

Or you can simply first find cos x 2 \cos \dfrac{x}{2} then substitute that into the formula for sin x 4 \sin \dfrac{x}{4} , which directly involves cos x 2 \cos \dfrac{x}{2} .

Hobart Pao - 4 years, 11 months ago

Let θ = arcsin 63 8 \theta = \arcsin \frac {\sqrt {63}}8 , sin ( 1 4 arcsin 63 8 ) = sin θ 4 \implies \sin \left(\frac 14 \arcsin \frac {\sqrt {63}}8 \right) = \sin \frac \theta 4 and sin θ = 63 8 \implies \sin \theta = \frac {\sqrt {63}}8 and cos θ = \cos \theta = 1 sin 2 θ \sqrt{1-\sin^2 \theta} = 1 63 64 = \sqrt{1-\frac {63}{64}} = 1 8 = \frac 18 .

2 cos 2 θ 2 1 = cos θ = 1 8 2 cos 2 θ 2 = 9 8 cos θ 2 = 3 4 \begin{aligned} 2\cos^2 \frac \theta 2 - 1 & = \cos \theta = \frac 18 \\ 2\cos^2 \frac \theta 2 & = \frac 98 \\ \implies \cos \frac \theta 2 & = \frac 34 \end{aligned}

2 cos 2 θ 4 1 = cos θ 4 = 3 4 2 cos 2 θ 4 = 7 4 cos θ 4 = 7 8 \begin{aligned} 2\cos^2 \frac \theta 4 - 1 & = \cos \frac \theta 4 = \frac 34 \\ 2\cos^2 \frac \theta 4 & = \frac 74 \\ \implies \cos \frac \theta 4 & = \sqrt{\frac 78} \end{aligned}

sin θ 4 = sin ( 1 4 arcsin 63 8 ) = 1 c o s 2 θ 4 = 1 7 8 = 1 8 \begin{aligned} \implies \sin \frac \theta 4 & = \sin \left(\frac 14 \arcsin \frac {\sqrt {63}}8 \right) \\ & = \sqrt{1-cos^2 \frac \theta 4} = \sqrt{1-\frac 78} = \frac 1{\sqrt 8} \end{aligned}

a + b = 1 + 8 = 9 \implies a+b = 1+8 = \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...