The smallest positive solution to sin ( x ) = sin ( x 2 ) is x = 1 . What is the second smallest positive solution?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
GREAT SOLUTION!
i f s i n ( A ) = s i n ( B ) , A = π n + B ( o r π n − B ) H e r e , n i s a n y i n t e g e r . F r o m q u e s t i o n , s i n ( x ) = s i n ( x 2 ) S o , e i t h e r x = x 2 − − 1 o r x 2 = π n − x − − 2 o r x 2 = π n + x − − 3 S i n c e w e h a v e t o f i n d l o w e s t p o s i t i v e s o l u t i o n , w e t a k e n = 1 i n e q n 2 a n d e q n 3 ( F o r j u s t i f i c a t i o n , l o o k a t t h i e r d i s c r i m i n a n t ) . e q n 1 g i v e s p o s i t i v e s o l u t i o n x = 1 w h i c h i s n o t a c c e p t e d e q n 2 g i v e s p o s i t i v e s o l u t i o n 2 − 1 + 1 + 4 π e q n 3 g i v e s p o s i t i v e s o l u t i o n 2 1 + 1 + 4 π W h e n w e c o m p a r e s o l u t i o n s f r o m e q n 2 a n d e q n 3 w e s e e 2 − 1 + 1 + 4 π i s t h e l e a s t p o s i t i v e v a l u e o f x g r e a t e r t h a n 1 . H e n c e t h e a n s w e r .
Problem Loading...
Note Loading...
Set Loading...
This requires some subjective graphical analysis, (i.e., a bit of hand-waving) ....
Since x 2 < x for 0 < x < 1 we have sin ( x 2 ) < sin ( x ) on this interval. The two curves intersect when x = 1 , after which, since x 2 > x for x > 1 , the curve sin ( x 2 ) "peaks" at 1 when x = 2 π < 2 π . This curve then declines, intersecting sin ( x ) for some x < 2 π .
Since sin ( x ) = sin ( π − x ) , this second point of intersection will thus occur when
x 2 = π − x ⟹ x 2 + x − π = 0 ⟹ x = 2 − 1 + 1 + 4 π ,
where the positive root was taken as we are looking for x > 1 .