Sine Of Squared

Geometry Level 3

The smallest positive solution to sin ( x ) = sin ( x 2 ) \Large \sin(x) = \sin(x^2) is x = 1. x=1. What is the second smallest positive solution?

no solutions >1 1 + 1 + 4 π 2 \frac{-1+\sqrt{1+4\pi}}{2} 1 + 1 + 8 π 2 \frac{-1+\sqrt{1+8\pi}}{2} 1 + 1 + 2 π 2 \frac{1+\sqrt{1+2\pi}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This requires some subjective graphical analysis, (i.e., a bit of hand-waving) ....

Since x 2 < x x^{2} \lt x for 0 < x < 1 0 \lt x \lt 1 we have sin ( x 2 ) < sin ( x ) \sin(x^{2}) \lt \sin(x) on this interval. The two curves intersect when x = 1 , x = 1, after which, since x 2 > x x^{2} \gt x for x > 1 , x \gt 1, the curve sin ( x 2 ) \sin(x^{2}) "peaks" at 1 1 when x = π 2 < π 2 . x = \sqrt{\frac{\pi}{2}} \lt \frac{\pi}{2}. This curve then declines, intersecting sin ( x ) \sin(x) for some x < π 2 . x \lt \frac{\pi}{2}.

Since sin ( x ) = sin ( π x ) , \sin(x) = \sin(\pi - x), this second point of intersection will thus occur when

x 2 = π x x 2 + x π = 0 x = 1 + 1 + 4 π 2 , x^{2} = \pi - x \Longrightarrow x^{2} + x - \pi = 0 \Longrightarrow x = \boxed{\dfrac{-1 + \sqrt{1 + 4\pi}}{2}},

where the positive root was taken as we are looking for x > 1. x \gt 1.

GREAT SOLUTION!

Pi Han Goh - 5 years, 7 months ago
Mayank Chaturvedi
Nov 12, 2015

i f s i n ( A ) = s i n ( B ) , A = π n + B ( o r π n B ) H e r e , n i s a n y i n t e g e r . F r o m q u e s t i o n , s i n ( x ) = s i n ( x 2 ) S o , e i t h e r x = x 2 1 o r x 2 = π n x 2 o r x 2 = π n + x 3 S i n c e w e h a v e t o f i n d l o w e s t p o s i t i v e s o l u t i o n , w e t a k e n = 1 i n e q n 2 a n d e q n 3 ( F o r j u s t i f i c a t i o n , l o o k a t t h i e r d i s c r i m i n a n t ) . e q n 1 g i v e s p o s i t i v e s o l u t i o n x = 1 w h i c h i s n o t a c c e p t e d e q n 2 g i v e s p o s i t i v e s o l u t i o n 1 + 1 + 4 π 2 e q n 3 g i v e s p o s i t i v e s o l u t i o n 1 + 1 + 4 π 2 W h e n w e c o m p a r e s o l u t i o n s f r o m e q n 2 a n d e q n 3 w e s e e 1 + 1 + 4 π 2 i s t h e l e a s t p o s i t i v e v a l u e o f x g r e a t e r t h a n 1. H e n c e t h e a n s w e r . if\quad sin(A)=sin(B),\\ A=\quad \pi n+B\quad (or\quad \pi n-B)\quad \\ Here,\quad n\quad is\quad any\quad integer.\\ From\quad question,\quad sin(x)=sin({ x }^{ 2 })\quad So,\\ either{ \quad \quad x\quad =\quad x }^{ 2 }\quad \quad --1\quad \\ or\quad { x }^{ 2 }=\pi n-{ x }\quad --2\\ or\quad { x }^{ 2 }=\pi n+{ x }\quad --3\\ \\ Since\quad we\quad have\quad to\quad find\quad lowest\quad positive\quad solution,\quad we\quad take\quad n=1\\ in\quad eqn2\quad and\quad eqn3\quad (For\quad justification,\quad look\quad at\quad thier\quad discriminant).\\ \\ eqn1\quad gives\quad positive\quad solution\quad x=1\quad which\quad is\quad not\quad accepted\\ eqn2\quad gives\quad positive\quad solution\quad \frac { -1+\sqrt { 1+4\pi } }{ 2 } \quad \\ eqn3\quad gives\quad positive\quad solution\quad \frac { 1+\sqrt { 1+4\pi } }{ 2 } \\ \\ When\quad we\quad compare\quad solutions\quad from\quad eqn2\quad and\quad eqn3\\ we\quad see\quad \quad \quad \frac { -1+\sqrt { 1+4\pi } }{ 2 } \quad is\quad the\quad least\quad positive\quad value\quad of\quad x\\ greater\quad than\quad 1.\quad Hence\quad the\quad answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...