Sine Product

Geometry Level 4

sin ( π 34 ) sin ( 9 π 34 ) sin ( 13 π 34 ) sin ( 15 π 34 ) \large\sin\left(\dfrac{\pi}{34}\right)\sin\left(\dfrac{9\pi}{34}\right)\sin\left(\dfrac{13\pi}{34}\right)\sin\left(\dfrac{15\pi}{34}\right)

If the value of the expression above can be represented by p q \dfrac{p}q , where p p and q q are coprime positive integers, compute p + q p+q .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
May 2, 2016

sin ( π 34 ) sin ( 9 π 34 ) sin ( 13 π 34 ) sin ( 15 π 34 ) = cos ( π 17 ) cos ( 2 π 17 ) cos ( 4 π 17 ) cos ( 8 π 17 ) = 2 sin ( π 17 ) cos ( π 17 ) cos ( 2 π 17 ) cos ( 4 π 17 ) cos ( 8 π 17 ) 2 sin ( π 17 ) = 2 sin ( 2 π 17 ) cos ( 2 π 17 ) cos ( 4 π 17 ) cos ( 8 π 17 ) 4 sin ( π 17 ) = 2 sin ( 4 π 17 ) cos ( 4 π 17 ) cos ( 8 π 17 ) 8 sin ( π 17 ) = 2 sin ( 8 π 17 ) cos ( 8 π 17 ) 16 sin ( π 17 ) = sin ( 16 π 17 ) 16 sin ( π 17 ) = sin ( π 17 ) 16 sin ( π 17 ) = 1 16 \begin{aligned}\sin\left(\dfrac{\pi}{34}\right)\sin\left(\dfrac{9\pi}{34}\right)\sin\left(\dfrac{13\pi}{34}\right)\sin\left(\dfrac{15\pi}{34}\right)=&\cos\left(\dfrac{\pi}{17}\right)\cos\left(\dfrac{2\pi}{17}\right)\cos\left(\dfrac{4\pi}{17}\right)\cos\left(\dfrac{8\pi}{17}\right)\\=&\dfrac{2\sin\left(\dfrac{\pi}{17}\right)\cos\left(\dfrac{\pi}{17}\right)\cos\left(\dfrac{2\pi}{17}\right)\cos\left(\dfrac{4\pi}{17}\right)\cos\left(\dfrac{8\pi}{17}\right)}{2\sin\left(\dfrac{\pi}{17}\right)}\\=&\dfrac{2\sin\left(\dfrac{2\pi}{17}\right)\cos\left(\dfrac{2\pi}{17}\right)\cos\left(\dfrac{4\pi}{17}\right)\cos\left(\dfrac{8\pi}{17}\right)}{4\sin\left(\dfrac{\pi}{17}\right)}\\=&\dfrac{2\sin\left(\dfrac{4\pi}{17}\right)\cos\left(\dfrac{4\pi}{17}\right)\cos\left(\dfrac{8\pi}{17}\right)}{8\sin\left(\dfrac{\pi}{17}\right)}\\=&\dfrac{2\sin\left(\dfrac{8\pi}{17}\right)\cos\left(\dfrac{8\pi}{17}\right)}{16\sin\left(\dfrac{\pi}{17}\right)}\\=&\dfrac{\sin\left(\dfrac{16\pi}{17}\right)}{16\sin\left(\dfrac{\pi}{17}\right)}\\=&\dfrac{\sin\left(\dfrac{\pi}{17}\right)}{16\sin\left(\dfrac{\pi}{17}\right)}\\=&\dfrac1{16}\end{aligned}

Thus, p + q = 1 + 16 = 17 p+q=1+16=\boxed{17}


Notes:

sin θ = cos ( π 2 θ ) = sin ( π θ ) \sin\theta=\cos\left(\dfrac{\pi}2-\theta\right)=\sin\left(\pi-\theta\right)

sin ( 2 θ ) = 2 sin θ cos θ \sin(2\theta)=2\sin\theta\cos\theta

Very neat solution!

Pi Han Goh - 5 years ago
Ahmad Saad
Apr 12, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...