Sine Series

Geometry Level 3

y = s i n θ s i n θ s i n θ . . . . . . \LARGE y=sin\theta\sqrt{sin\theta\sqrt{sin\theta......}}

If y 0 y\neq0 . For whice value of θ \theta , y = 1 2 y=\frac{1}{2}

π 3 \frac{\pi}{3} π \pi π 8 \frac{\pi}{8} 0 0 π 6 \frac{\pi}{6} None of them π 4 \frac{\pi}{4} π 2 \frac{\pi}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Oct 29, 2017

y = s i n θ s i n θ s i n θ . . . . . . y = s i n θ y y 2 = s i n 2 θ × y y ( y s i n 2 θ ) = 0 y = s i n 2 θ y 0 1 2 = s i n 2 θ s i n θ = 1 2 θ = π 4 y=sin\theta\sqrt{sin\theta\sqrt{sin\theta......}}\\\Rightarrow y=sin\theta\sqrt{y}\\\Rightarrow y^2=sin^2\theta\times{y}\\\Rightarrow y(y-sin^2\theta)=0\\\Rightarrow y=sin^2\theta { \quad \quad \quad \quad {\color{#3D99F6}\boxed{y\neq0}}}\\\Rightarrow \frac{1}{2}=sin^2\theta\\\Rightarrow sin\theta=\frac{1}{\sqrt2}\\\therefore \theta=\boxed{\frac{\pi}{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...