Sine Summation

Geometry Level 4

sin 2 π 7 + sin 4 π 7 + sin 8 π 7 \large \sin \dfrac{2\pi }7 + \sin \dfrac{4\pi }7 + \sin \dfrac{8\pi }7

If the value of the expression above can be expressed as a b \dfrac {\sqrt a}b , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Gupta
Apr 11, 2016

Let α = e 2 π i / 7 \alpha=e^{2\pi i/7} .

Then sin 2 π 7 = α α 1 2 i , sin 4 π 7 = α 2 α 2 2 i , sin 8 π 7 = α 4 α 4 2 i . \sin\frac{2\pi}{7}=\frac{\alpha-\alpha^{-1}}{2i}\ ,\quad \sin\frac{4\pi}{7}=\frac{\alpha^2-\alpha^{-2}}{2i}\ ,\quad \sin\frac{8\pi}{7}=\frac{\alpha^4-\alpha^{-4}}{2i}\ .

Also note that: α 7 = 1 \hbox a n d α 6 + α 5 + + α = 1 \alpha^7=1\quad\hbox{and}\quad \alpha^6+\alpha^5+\cdots+\alpha=-1

Let sin 2 π 7 + sin 4 π 7 + sin 8 π 7 = S \sin\frac{2\pi}{7}+\sin\frac{4\pi}{7}+\sin\frac{8\pi}{7} = S

S = α + α 2 + α 4 ( α 3 + α 5 + α 6 ) 2 i S = \frac{\alpha+\alpha^2+\alpha^4-(\alpha^3+\alpha^5+\alpha^6)}{2i}

S 2 = ( α + α 2 + α 4 ) 2 + ( α 3 + α 5 + α 6 ) 2 2 ( α + α 2 + α 4 ) ( α 3 + α 5 + α 6 ) 4 S^2 = \frac{(\alpha+\alpha^2+\alpha^4)^2+(\alpha^3+\alpha^5+\alpha^6)^2 - 2(\alpha+\alpha^2+\alpha^4)(\alpha^3+\alpha^5+\alpha^6)}{-4}

This simplifies to

S 2 = 7 4 S^2=\frac{7}{4}

Also, it can be easily seen that S > 0 S>0 , hence we consider only the positive root:

S = 7 2 S=\frac{\sqrt7}{2}

Hence, a = 7 , b = 2 a=7, b=2 and a + b = 9 a+b=9 .

This is very well written! +1

Pi Han Goh - 5 years, 2 months ago

Used TI 83 PLUS.

Niranjan Khanderia - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...