:)

Algebra Level 3

n = 1 2 2 n sin 4 π 2 n = ? \sum_{n=1}^{\infty} 2^{2n}\sin^4\frac{\pi}{2^n} =\ ?


The answer is 9.869.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 28, 2019

S = lim n k = 1 n 2 2 n sin 4 π 2 n = lim n k = 1 n 2 2 n sin 2 π 2 n sin 2 π 2 n = lim n k = 1 n 2 2 n sin 2 π 2 n ( 1 cos 2 π 2 n ) = lim n k = 1 n 2 2 n ( sin 2 π 2 n sin 2 π 2 n cos 2 π 2 n ) = lim n k = 1 n 2 2 n ( sin 2 π 2 n 1 4 sin 2 π 2 n 1 ) = lim n ( k = 1 n 2 2 n sin 2 π 2 n k = 0 n 1 2 2 n sin 2 π 2 n ) = lim n 2 2 n sin 2 π 2 n = lim n sin 2 π 2 n 1 2 2 n Let x = π 2 n = lim x 0 π 2 sin 2 x x 2 = π 2 9.870 Since lim x 0 sin x x = 1 \begin{aligned} S & = \lim_{n \to \infty} \sum_{k=1}^n 2^{2n} \sin^4 \frac \pi {2^n} \\ & = \lim_{n \to \infty} \sum_{k=1}^n 2^{2n} \sin^2 \frac \pi {2^n} \cdot \sin^2 \frac \pi {2^n} \\ & = \lim_{n \to \infty} \sum_{k=1}^n 2^{2n} \sin^2 \frac \pi {2^n} \left(1 - \cos^2 \frac \pi {2^n} \right) \\ & = \lim_{n \to \infty} \sum_{k=1}^n 2^{2n} \left(\sin^2 \frac \pi {2^n} - \sin^2 \frac \pi {2^n} \cos^2 \frac \pi {2^n} \right) \\ & = \lim_{n \to \infty} \sum_{k=1}^n 2^{2n} \left(\sin^2 \frac \pi {2^n} - \frac 14 \sin^2 \frac \pi {2^{n-1}} \right) \\ & = \lim_{n \to \infty} \left(\sum_{k=1}^n 2^{2n} \sin^2 \frac \pi {2^n} - \sum_{k=0}^{n-1} 2^{2n} \sin^2 \frac \pi {2^n} \right) \\ & = \lim_{n \to \infty} 2^{2n} \sin^2 \frac \pi {2^n} = \lim_{n \to \infty} \frac {\sin^2 \frac \pi {2^n}}{\frac 1{2^{2n}}} & \small \blue{\text{Let }x = \frac \pi {2^n}} \\ & = \lim_{x \to 0} \frac {\pi^2 \sin^2 x}{x^2} = \pi^2 \approx \boxed{9.870} & \small \blue{\text{Since }\lim_{x \to 0}\frac {\sin x}x = 1} \end{aligned}

Sarthak Sahoo
Dec 28, 2019

Hint: Consider a general Problem n = 1 2 2 n sin 4 a 2 n \displaystyle\sum_{n=1}^{\infty} 2^{2n}\sin^4\frac{a}{2^n} and break sin 4 x = sin 2 x sin 2 x \sin^4x=\sin^2x\sin^2x

This is a hint but not a solution, you should better make a solution

Isaac YIU Math Studio - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...