Sines are Cosines

Calculus Level 3

For all positive numbers n n , we have that 0 π 2 sin n ( x ) sin n ( x ) + cos n ( x ) d x = π a 4 b . \int_0^{\frac{\pi}{2}} \frac{\sin^n(x)}{\sin^n(x) + \cos^n(x)}\,dx = \frac{\pi^a}{4^b}. What is the value of a b \dfrac{a}{b} ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vincent Moroney
Jun 19, 2018

Let I I denote the integral. I = 0 π 2 sin n ( x ) sin n ( x ) + cos n ( x ) d x I = 0 π 2 sin n ( π 2 x ) sin n ( π 2 x ) + cos n ( π 2 x ) d x via a b f ( x ) d x = a b f ( a + b x ) d x I = 0 π 2 cos n ( x ) sin n ( x ) + cos n ( x ) d x 2 I = 0 π 2 sin n ( x ) + cos n ( x ) sin n ( x ) + cos n ( x ) d x 2 I = π 2 I = π 4 a b = 1 \begin{aligned} I = & \int_0^{\frac{\pi}{2}} \frac{\sin^n(x)}{\sin^n(x)+\cos^n(x)}\,dx \\ I= & \int_0^{\frac{\pi}{2}} \frac{\sin^n(\frac{\pi}{2} - x)}{\sin^n(\frac{\pi}{2} -x) + \cos^n(\frac{\pi}{2} - x)} \,dx \text{ via } \color{#3D99F6} \int_a^bf(x) \,dx = \int_a^bf(a+b-x)\,dx\\ I = &\int_0^{\frac{\pi}{2}} \frac{\cos^n(x)}{\sin^n(x)+\cos^n(x)}\,dx \\ 2I = & \int_0^{\frac{\pi}{2}} \frac{\sin^n(x) + \cos^n(x)}{\sin^n(x)+\cos^n(x)}\,dx \\ 2I = & \frac{\pi}{2}\\ I = & \frac{\pi}{4} \\ &\boxed{\frac{a}{b} = 1} \end{aligned}

D G
Jun 19, 2018

Let n = 0 n = 0 , then

0 π 2 sin 0 ( x ) sin 0 ( x ) + c o s 0 ( x ) = 0 π 2 1 2 = π 4 \int_0^{\frac{\pi}{2}} \frac{\sin^0 (x)}{\sin^0(x) + cos^0(x)} = \int_0^{\frac{\pi}{2}} \frac{1}{2} = \frac{\pi}{4}

. .
Mar 14, 2021

a = b 0 , so π a 4 b a b = 1 \displaystyle a = b \ne 0, \text { so } \frac { \pi ^ { a } } { 4 ^ { b } } \rightarrow \frac { a } { b } = \boxed { 1 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...