Sines are sinister

Geometry Level 3

k = 1 8 ( sin ( k π 18 ) ) = ? \large{\prod _{ k=1 }^{ 8 }{ \left( \sin { \left( \frac { k\pi }{ 18 } \right) } \right) } = \ ?}

4 256 \dfrac{4}{256} 1 256 \dfrac{1}{256} 2 256 \dfrac{2}{256} 3 256 \dfrac{3}{256}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rajen Kapur
Oct 9, 2015

z 18 = 1 z^{18}=1 has roots z = 1 , e π i 9 , e 2 π i 9 , e 3 π i 9 , . . . . . . e 16 π i 9 , e 17 π i 9 , z = 1,e^\dfrac{\pi i}{9},e^\dfrac{2\pi i}{9},e^\dfrac{3\pi i}{9},. . . . . . e^\dfrac{16\pi i}{9},e^\dfrac{17\pi i}{9}, then z 18 1 = ( z 1 ) ( z e π i 9 ) ( z e 2 π i 9 ) ( z e 3 π i 9 ) , . . . . . . ( z e 16 π i 9 ) ( z e 17 π i 9 ) z^{18}-1=(z-1)(z-e^\dfrac{\pi i}{9})(z-e^\dfrac{2\pi i}{9})(z-e^\dfrac{3\pi i}{9}),. . . . . . (z-e^\dfrac{16\pi i}{9})(z-e^\dfrac{17\pi i}{9}) Now dividing L.H.S. and R.H.S. by (z-1), and taking limits at z = 1, 18 = ( 1 e π i 9 ) ( 1 e 2 π i 9 ) ( 1 e 3 π i 9 ) , . . . . . . ( 1 e 16 π i 9 ) ( 1 e 17 π i 9 ) . 18=(1-e^\dfrac{\pi i}{9})(1-e^\dfrac{2\pi i}{9})(1-e^\dfrac{3\pi i}{9}),. . . . . . (1-e^\dfrac{16\pi i}{9})(1-e^\dfrac{17\pi i}{9}). Multiplying by its conjugate gives, 1 8 2 = 2 17 ( 1 c o s π 9 ) ( 1 c o s 2 π 9 ) ( 1 c o s 3 π 9 ) , . . . . . . ( 1 c o s 16 π 9 ) ( 1 c o s 17 π 9 ) . 18^2=2^{17}(1-cos\dfrac{\pi}{9})(1-cos\dfrac{2\pi}{9})(1-cos\dfrac{3\pi}{9}),. . . . . . (1-cos\dfrac{16\pi}{9})(1-cos\dfrac{17\pi}{9}). Now putting 1 c o s 2 θ = 2 s i n 2 θ 1-cos2\theta=2sin^2\theta everywhere thus halving angles 1 8 2 = 2 17 ( 2 s i n 2 π 18 ) ( 2 s i n 2 2 π 18 ) ( 2 s i n 2 3 π 18 ) , . . . . . . ( 2 s i n 2 16 π 18 ) ( 2 s i n 2 17 π 18 ) . 18^2 = 2^{17}(2sin^2\dfrac{\pi}{18})(2sin^2\dfrac{2\pi}{18})(2sin^2\dfrac{3\pi}{18}),. . . . . . (2sin^2\dfrac{16\pi}{18})(2sin^2\dfrac{17\pi}{18}). Taking square-root 18 = 2 17 ( s i n π 18 ) ( s i n 2 π 18 ) ( s i n 3 π 18 ) , . . . . . . ( s i n 16 π 18 ) ( s i n 17 π 18 ) . 18= 2^{17}(sin\dfrac{\pi}{18})(sin\dfrac{2\pi}{18})(sin\dfrac{3\pi}{18}),. . . . . . (sin\dfrac{16\pi}{18})(sin\dfrac{17\pi}{18}). Now use the fact that first and last factors are equal as s i n θ = s i n ( π θ ) sin\theta = sin(\pi-\theta) and as s i n 9 π 18 = 1 sin\dfrac{9\pi}{18}=1 , taking square-root once again we get the desired answer as ( 9 2 16 ) = 3 256 . \sqrt(\dfrac{9}{2^{16}})= \dfrac{3}{256}.

Nice solution upvoted!!

Department 8 - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...