Sines everywhere

Geometry Level 5

sin ( 3 π 10 x 2 ) = 1 2 sin ( π 10 + 3 x 2 ) \large \sin\bigg(\frac{3 \pi}{10}-\frac{x}{2}\bigg)=\frac{1}{2} \sin\bigg(\frac{\pi}{10}+\frac{3x}{2}\bigg) How many real values of x [ π ; π ] x\in[-\pi;\pi] satisfy the equation above?

5 3 1 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Sep 2, 2016

We see that c o s ( 3 π 10 x 2 ) = 0 cos\big(\frac{3\pi}{10}-\frac{x}{2}\big)=0 is not the solution, so now with c o s ( 3 π 10 x 2 ) 0 x 2 π 5 + k 2 π ( k Z ) cos\big(\frac{3\pi}{10}-\frac{x}{2}\big)\neq 0 \Leftrightarrow x \neq \frac{-2\pi}{5}+k2\pi (k\in\mathbb{Z}) , we multiply both side with it and get s i n ( 3 π 5 x ) = s i n ( π 10 + 3 x 2 ) c o s ( 3 π 10 x 2 ) sin\bigg(\frac{3\pi}{5}-x\bigg)=sin\bigg(\frac{\pi}{10}+\frac{3x}{2}\bigg)cos\bigg(\frac{3\pi}{10}-\frac{x}{2}\bigg) s i n ( 3 π 5 x ) = 1 2 [ s i n ( 2 π 5 + x ) + s i n ( 2 x π 5 ) ] \Leftrightarrow sin\bigg(\frac{3\pi}{5}-x\bigg)=\frac{1}{2}\bigg[sin\bigg(\frac{2\pi}{5}+x\bigg)+sin\bigg(2x-\frac{\pi}{5}\bigg)\bigg] Set x + 2 π 5 = t x+\frac{2\pi}{5}=t and we get s i n ( π t ) = 1 2 [ s i n ( t ) + s i n ( 2 t π ) ] sin(\pi-t)=\frac{1}{2}[sin(t)+sin(2t-\pi)] The equation above gives us s i n ( t ) = 0 sin(t)=0 and c o s ( t ) = 1 2 cos(t)=\frac{-1}{2} . Solve them and we have x = { 2 π 5 + k π ; 4 π 15 + k 2 π ; 16 π 15 + k 2 π k Z } x=\big\{\frac{-2\pi}{5}+k\pi; \frac{4\pi}{15}+k2\pi; \frac{-16\pi}{15}+k2\pi | k\in\mathbb{Z}\big\} . Due to the condition, we'll have x = { 3 π 5 + k 2 π ; 4 π 15 + k 2 π ; 16 π 15 + k 2 π k Z } x=\bigg\{\frac{3\pi}{5}+k2\pi;\frac{4\pi}{15}+k2\pi; \frac{-16\pi}{15}+k2\pi | k\in\mathbb{Z}\bigg\} Since x [ π ; π ] x\in [-\pi;\pi] , we'll get 3 roots x = { 3 π 5 ; 4 π 15 ; 14 π 15 } x=\big\{\frac{3\pi}{5};\frac{4\pi}{15}; \frac{14\pi}{15}\big\}

Left hand side should be sin not cos after multiplying and using sin(2x)=2sin(x)cos(x). Anyways great solution.

Panda Man - 2 years, 5 months ago

Log in to reply

thank you, I'll fix it right away

P C - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...