Sines in 2017

Algebra Level 4

n = 1 2017 n + sin ( x n ) = ? \large \sum_{n=1}^{2017} \left\lfloor n + \sin \left( \dfrac xn \right) \right\rfloor \ = \ ?

Details and notations:

  • Here x ( 0 , π 2 ) x \in \left( 0 , \dfrac{\pi}{2} \right) .
  • \left\lfloor \cdot \right\rfloor denotes the floor function .


The answer is 2035153.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = n = 1 2017 n + sin ( x n ) Note that for x ( 0 , π 2 ) , sin x ( 0 , 1 ) = n = 1 2017 n = 2017 ( 2017 + 1 ) 2 = 2035153 \begin{aligned} S & = \sum_{n=1}^{2017} \left \lfloor n + {\color{#3D99F6}\sin \left(\frac xn \right)} \right \rfloor & \small \color{#3D99F6} \text{Note that for }x \in \left(0, \frac \pi 2\right), \ \sin x \in \left(0, 1 \right) \\ & = \sum_{n=1}^{2017} n \\ & = \frac {2017(2017+1)}2 \\ & = \boxed{2035153} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...