Sines! Stop bothering me!

Geometry Level 4

sin π 7 sin 2 π 7 sin 3 π 7 sin 4 π 7 sin 5 π 7 sin 6 π 7 \sin { \frac { \pi }{ 7 } } \sin { \frac { 2\pi }{ 7 } } \sin { \frac { 3\pi }{ 7 } } \sin { \frac { 4\pi }{ 7 } } \sin { \frac { 5\pi }{ 7 } } \sin { \frac { 6\pi }{ 7 } }

If the value of the expression above is equal to A B \dfrac AB , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Salz City
Mar 8, 2016

For k k from 0 0 to 6 6 , the complex numbers e i 2 k π 7 e^{i \frac{2k\pi}{7}} are roots of polynomial z 7 1 z^{7} - 1 .

Also z 7 1 = ( z 1 ) ( z 6 + z 5 + z 4 + z 3 + z 2 + z + 1 ) z^{7} - 1 = (z-1) (z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1) so

z 7 1 z 1 = z 6 + z 5 + z 4 + z 3 + z 2 + z + 1 \frac{z^{7} - 1}{z-1} = z^{6} + z^{5} + z^{4} + z^{3} + z^{2} + z + 1 for z 1 z \neq 1 and

z 7 1 z 1 = k = 1 6 ( z e i 2 k π 7 ) \frac{z^{7} - 1}{z-1} = \prod \limits_{k=1}^{6} (z - e^{i \frac{2k\pi}{7}})

So for z = 1 z = 1 we have k = 1 6 ( 1 e i 2 k π 7 ) = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7 \prod \limits_{k=1}^{6} (1 - e^{i \frac{2k\pi}{7}}) = 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7

The sin \sin trigonometric function is related with complex number by sin α = e i α e i α 2 i \sin{\alpha} = \large \frac{e^{i \alpha} - e^{- i \alpha}}{2 i} So

k = 1 6 sin k π 7 = k = 1 6 e i k π 7 e i k π 7 2 i = k = 1 6 e i k π 7 ( e i 2 k π 7 1 ) 2 i = \large \prod \limits_{k=1}^{6} \sin{\frac{k \pi}{7}} = \prod \limits_{k=1}^{6} \frac{e^{i \frac{k \pi}{7}} - e^{- i \frac{k \pi}{7}}}{2 i} = \prod \limits_{k=1}^{6} \frac{e^{- i \frac{k \pi}{7}} (e^{i \frac{2 k \pi}{7}} - 1)}{2 i} =

= ( 1 ) 6 2 6 i 6 k = 1 6 e i k π 7 k = 1 6 ( 1 e i 2 k π 7 ) = 7 64 i 6 e i π 7 k = 1 6 k = 7 64 i 6 e i π 6 7 2 7 = \large = \frac{(-1)^6}{2^6 i^6} \prod \limits_{k=1}^{6} e^{- i \frac{k \pi}{7}} \prod \limits_{k=1}^{6} (1 - e^{i \frac{2 k \pi}{7}}) = \frac{7}{ 64 i^6} e^{- i \frac{\pi}{7} \sum \limits_{k=1}^{6} k} = \frac{7}{ 64 i^6} e^{- i \frac{\pi \cdot 6 \cdot 7}{2 \cdot 7}} =

= 7 64 i 6 ( e i π 2 ) 6 = 7 i 6 64 i 6 = 7 64 \large = \frac{7}{ 64 i^6} (e^{- i \frac{\pi}{2}})^6 = \frac{7 i^6}{ 64 i^6} = \frac{7}{64}

So the solution is

7 + 64 = \large 7 + 64 =

71 \large 71

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...