Sines,cosines and zeros

Geometry Level 3

If sin x + sin y + sin z = 0 \sin x+\sin y+\sin z=0 and cos x + cos y + cos z = 0 \cos x+\cos y+ \cos z=0 , what is the value of cos ( x y ) \cos (x-y) ?


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Xi Guan
May 16, 2018

In this question we need to use a few formulas

1)(SinH)^2+(cosH)^2=1

2)cos(H-K)=sinHcosK+cosHsinK

sinX+sinY+sinZ=0

SinX+sinY=-sinZ

(SinX+sinY)^2=(sinZ)^2

cosX+cosY+cosZ=0

cosX+cosY=-cosZ

(cosX+cosY)^2=(cosZ)^2

Add them up

(SinX+sinY)^2+(cosX+cosY)^2 =(cosZ)^2+(sinZ)^2

(SinX+sinY)^2+(cosX+cosY)^2=1

(SinX)^2+(sinY)^2+2sinXsinY+(cosX)^2+(cosY)^2+2cosXcosY=1

1+1+2sinXsinY+2cosXcosY=1

Cos(X-Y)=-0.5

Chew-Seong Cheong
May 17, 2018

The general solution for { sin x + sin y + sin z = 0 cos x + cos y + cos z = 0 \begin{cases} \sin x + \sin y + \sin z = 0 \\ \cos x + \cos y + \cos z = 0 \end{cases} is ( x , y , z ) = ( θ 2 π 3 , θ , θ + 2 π 3 ) (x, y, z) = \left(\theta - \frac {2\pi}3, \theta, \theta + \frac {2\pi}3\right) for all real θ \theta , where x x , y y , and z z can take anyone of the three values. The proof is as follows:

{ sin x + sin y + sin z = sin ( θ 2 π 3 ) + sin θ + sin ( θ + 2 π 3 ) = 2 sin θ cos 2 π 3 + sin θ = sin θ + sin θ = 0 cos x + cos y + cos z = cos ( θ 2 π 3 ) + cos θ + cos ( θ + 2 π 3 ) = 2 cos θ cos 2 π 3 + sin θ = cos θ + cos θ = 0 \begin{cases} \sin x + \sin y + \sin z & = {\color{#3D99F6}\sin \left(\theta - \frac {2\pi}3\right)} + \sin \theta + {\color{#3D99F6}\sin \left(\theta + \frac {2\pi}3\right)} = {\color{#3D99F6}2 \sin \theta \cos \frac {2\pi}3} + \sin \theta = - \sin \theta + \sin \theta = 0 \\ \cos x + \cos y + \cos z & = {\color{#3D99F6}\cos \left(\theta - \frac {2\pi}3\right)} + \cos \theta + {\color{#3D99F6}\cos \left(\theta + \frac {2\pi}3\right)} = {\color{#3D99F6}2 \cos \theta \cos \frac {2\pi}3} + \sin \theta = - \cos \theta + \cos \theta = 0 \end{cases}

Therefore, cos ( x y ) = { cos ( θ 2 π 3 θ ) = cos ( 2 π 3 ) = 1 2 cos ( θ θ 2 π 3 ) = cos ( 2 π 3 ) = 1 2 cos ( θ + 2 π 3 θ + 2 π 3 ) = cos ( 4 π 3 ) = 1 2 = 0.5 \cos (x-y) = \begin{cases} \cos \left(\theta - \frac {2\pi}3-\theta \right) = \cos \left(-\frac {2\pi}3\right) = - \frac 12 \\ \cos \left(\theta - \theta - \frac {2\pi}3 \right) = \cos \left(-\frac {2\pi}3\right) = - \frac 12 \\ \cos \left(\theta + \frac {2\pi}3-\theta + \frac {2\pi}3 \right) = \cos \left(\frac {4\pi}3\right) = - \frac 12 \end{cases} = \boxed{-0.5} .

Wow! Impressive

xi guan - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...