If sin x + sin y + sin z = 0 and cos x + cos y + cos z = 0 , what is the value of cos ( x − y ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The general solution for { sin x + sin y + sin z = 0 cos x + cos y + cos z = 0 is ( x , y , z ) = ( θ − 3 2 π , θ , θ + 3 2 π ) for all real θ , where x , y , and z can take anyone of the three values. The proof is as follows:
{ sin x + sin y + sin z cos x + cos y + cos z = sin ( θ − 3 2 π ) + sin θ + sin ( θ + 3 2 π ) = 2 sin θ cos 3 2 π + sin θ = − sin θ + sin θ = 0 = cos ( θ − 3 2 π ) + cos θ + cos ( θ + 3 2 π ) = 2 cos θ cos 3 2 π + sin θ = − cos θ + cos θ = 0
Therefore, cos ( x − y ) = ⎩ ⎪ ⎨ ⎪ ⎧ cos ( θ − 3 2 π − θ ) = cos ( − 3 2 π ) = − 2 1 cos ( θ − θ − 3 2 π ) = cos ( − 3 2 π ) = − 2 1 cos ( θ + 3 2 π − θ + 3 2 π ) = cos ( 3 4 π ) = − 2 1 = − 0 . 5 .
Wow! Impressive
Problem Loading...
Note Loading...
Set Loading...
In this question we need to use a few formulas
1)(SinH)^2+(cosH)^2=1
2)cos(H-K)=sinHcosK+cosHsinK
sinX+sinY+sinZ=0
SinX+sinY=-sinZ
(SinX+sinY)^2=(sinZ)^2
cosX+cosY+cosZ=0
cosX+cosY=-cosZ
(cosX+cosY)^2=(cosZ)^2
Add them up
(SinX+sinY)^2+(cosX+cosY)^2 =(cosZ)^2+(sinZ)^2
(SinX+sinY)^2+(cosX+cosY)^2=1
(SinX)^2+(sinY)^2+2sinXsinY+(cosX)^2+(cosY)^2+2cosXcosY=1
1+1+2sinXsinY+2cosXcosY=1
Cos(X-Y)=-0.5