Sink Cost Tank Cots

Geometry Level 5

sin 2 y x cos y 2 2 x + cos 2 y x sin y 2 2 x = 2 tan x 1 + tan 2 x \dfrac{\sin^{2y}x}{\cos^{\frac{y^2}{2}}x} + \dfrac{\cos^{2y}x}{\sin^{\frac{y^2}{2}}x} = \dfrac{2\tan x}{1+\tan^2x}

There are n n pairs of real numbers x , y x,y , such that x ( 0 , π 2 ) \ x \in \Big( 0, \dfrac{\pi}{2} \Big) , that satisfy the above equation.
Let α = 4 3 ( x 1 y 1 + x 2 y 2 + + x n y n ) \alpha=\dfrac{4}{3} (x_1y_1 + x_2y_2 + \cdots + x_ny_n)

Then the value of ( sin α + sin 4 α + sin 7 α + + sin 298 α ) (\sin \alpha + \sin 4\alpha + \sin 7\alpha + \cdots + \sin 298\alpha) can be expressed as a b a \sqrt b , where a a and b b are positive integers with b b is square free. Find a + b a+b .


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mikael Marcondes
Jul 25, 2015

First, let's do some transformations:

2 t a n x 1 + t a n 2 x × c o s 2 x c o s 2 x = 2 s i n x c o s x = s i n 2 x \displaystyle \frac{2 \ tan \ x}{1+tan^2 \ x} \times \frac{cos^2 \ x}{cos^2 \ x}=2 \ sin \ x \ cos \ x=sin \ 2x

s i n 2 y x c o s y 2 2 x + c o s 2 y x s i n y 2 2 x = s i n 2 y x c o s y 2 2 x × s i n y 2 2 x s i n y 2 2 x + c o s 2 y x s i n y 2 2 x × c o s y 2 2 x c o s y 2 2 x \displaystyle \frac{sin^{2y} \ x}{cos^{\frac{y^2}{2}} \ x}+\frac{cos^{2y} \ x}{sin^{\frac{y^2}{2}} \ x}=\frac{sin^{2y} \ x}{cos^{\frac{y^2}{2}} \ x} \times \frac{sin^{\frac{y^2}{2}} \ x}{sin^{\frac{y^2}{2}} \ x} +\frac{cos^{2y} \ x}{sin^{\frac{y^2}{2}} \ x} \times \frac{cos^{\frac{y^2}{2}} \ x}{cos^{\frac{y^2}{2}} \ x}\implies

s i n 2 y x c o s y 2 2 x + c o s 2 y x s i n y 2 2 x = s i n y 2 2 + 2 y x + c o s y 2 2 + 2 y x ( s i n x c o s x ) y 2 2 \implies \displaystyle \frac{sin^{2y} \ x}{cos^{\frac{y^2}{2}} \ x}+\frac{cos^{2y} \ x}{sin^{\frac{y^2}{2}} \ x}= \frac{sin^{ \frac{y^2}{2}+2y} \ x+cos^{\frac{y^2}{2}+2y} \ x}{ \left(sin \ x \ cos \ x \right)^{\frac{y^2}{2}}}\implies

s i n 2 y x c o s y 2 2 x + c o s 2 y x s i n y 2 2 x = 2 y 2 2 ( s i n y 2 2 + 2 y x + c o s y 2 2 + 2 y x ) ( 2 s i n x c o s x ) y 2 2 \implies \displaystyle \frac{sin^{2y} \ x}{cos^{\frac{y^2}{2}} \ x}+\frac{cos^{2y} \ x}{sin^{\frac{y^2}{2}} \ x}= \frac{2^{\frac{y^2}{2}}\left(sin^{ \frac{y^2}{2}+2y} \ x+cos^{\frac{y^2}{2}+2y} \ x\right)}{ \left(2 \ sin \ x \ cos \ x \right)^{\frac{y^2}{2}}}\implies

s i n 2 y x c o s y 2 2 x + c o s 2 y x s i n y 2 2 x = 2 y 2 2 ( s i n y 2 2 + 2 y x + c o s y 2 2 + 2 y x ) ( s i n 2 x ) y 2 2 \implies \displaystyle \frac{sin^{2y} \ x}{cos^{\frac{y^2}{2}} \ x}+\frac{cos^{2y} \ x}{sin^{\frac{y^2}{2}} \ x}= \frac{2^{\frac{y^2}{2}}\left(sin^{ \frac{y^2}{2}+2y} \ x+cos^{\frac{y^2}{2}+2y} \ x\right)}{ \left(sin \ 2x \right)^{\frac{y^2}{2}}}

For equality to hold:

2 y 2 2 ( s i n y 2 2 + 2 y x + c o s y 2 2 + 2 y x ) ( s i n 2 x ) y 2 2 = s i n 2 x \displaystyle\frac{2^{\frac{y^2}{2}}\left(sin^{ \frac{y^2}{2}+2y} \ x+cos^{\frac{y^2}{2}+2y} \ x\right)}{ \left(sin \ 2x \right)^{\frac{y^2}{2}}}=sin \ 2x \implies

2 y 2 2 ( s i n y 2 2 + 2 y x + c o s y 2 2 + 2 y x ) = ( s i n 2 x ) y 2 2 + 1 \implies \displaystyle 2^{\frac{y^2}{2}} \ \left(sin^{ \frac{y^2}{2}+2y} \ x+cos^{\frac{y^2}{2}+2y} \ x \right)= \left(sin \ 2x \right)^{\frac{y^2}{2}+1}

Now, define f ( x ) f(x) and g ( x ) g(x) as:

f ( x ) = 2 y 2 2 ( s i n y 2 2 + 2 y x + c o s y 2 2 + 2 y x ) \displaystyle f(x)=2^{\frac{y^2}{2}} \ \left(sin^{ \frac{y^2}{2}+2y} \ x+cos^{\frac{y^2}{2}+2y} \ x \right)

g ( x ) = ( s i n 2 x ) y 2 2 + 1 \displaystyle g(x)= \left(sin \ 2x \right)^{\frac{y^2}{2}+1}

Derivating both f ( x ) f(x) and g ( x ) g(x) and equating to zero, one can find the critical points of the functions:

f ( x ) = 2 y 2 2 ( y 2 2 + 2 y ) ( s i n y 2 2 2 y 1 x c o s x c o s y 2 2 2 y 1 x s i n x ) \displaystyle f'(x)=2^{\frac{y^2}{2}} \ \left(\frac{y^2}{2}+2y\right) \ \left(sin^{\frac{y^2}{2}-2y-1} \ x \ cos \ x-cos^{\frac{y^2}{2}-2y-1} \ x \ sin \ x \right)

f ( x ) = 0 s i n y 2 2 2 y 1 x c o s x = c o s y 2 2 2 y 1 x s i n x \displaystyle f'(x)=0 \implies sin^{\frac{y^2}{2}-2y-1} \ x \ cos \ x=cos^{\frac{y^2}{2}-2y-1} \ x \ sin \ x

f ( x ) = 0 s i n y 2 2 2 y 2 x = c o s y 2 2 2 y 2 x x = ( 2 k + 1 ) π 4 , k Z \displaystyle f'(x)=0 \implies sin^{\frac{y^2}{2}-2y-2} \ x=cos^{\frac{y^2}{2}-2y-2} \ x \implies x=\frac{(2k+1) \pi}{4}, k \in \mathbb{Z}

g ( x ) = ( y 2 2 + 1 ) ( s i n 2 x ) y 2 2 2 c o s 2 x \displaystyle g'(x)=\left(\frac{y^2}{2}+1\right) \ \left(sin \ 2x \right)^{\frac{y^2}{2}} \ 2 \ cos \ 2x

g ( x ) = 0 ( s i n 2 x ) y 2 2 = 0 c o s 2 x = 0 x = 0 x = ( 2 k + 1 ) π 4 , k Z \displaystyle g'(x)=0 \implies \left(sin \ 2x \right)^{\frac{y^2}{2}}=0 \vee cos \ 2x=0\implies x=0 \vee x=\frac{(2k+1) \pi}{4}, k \in \mathbb{Z}

Second derivative test shows us how do f ( x ) f(x) and g ( x ) g(x) increase or decrease, and that x = π 4 x=\frac{\pi}{4} (since x ( 0 , π 2 ) x \in \left(0, \frac{\pi}{2}\right) ) is a maximum for g ( x ) g(x) and a minimum for g ( x ) g(x) ( x = 0 x=0 is an inflection point).

Sketching both graphs, for any y y (in fact, the variation of y y defines a family of curves on the plane x y xy ), f ( x ) f(x) is greater than g ( x ) g(x) everywhere, except for some y y , at minimum of f ( x ) f(x) and maximum of g ( x ) g(x) , where they're equal, verifying equality proposed. Substituting, gives:

2 t a n π 4 1 + t a n 2 π 4 = s i n 2 y π 4 c o s y 2 2 π 4 + c o s 2 y π 4 s i n y 2 2 π 4 \displaystyle \frac{2 \ tan \ \frac{\pi}{4}}{1+tan^2 \ \frac{\pi}{4}}=\frac{sin^{2y} \ \frac{\pi}{4}}{cos^{\frac{y^2}{2}} \ \frac{\pi}{4}}+\frac{cos^{2y} \ \frac{\pi}{4}}{sin^{\frac{y^2}{2}} \ \frac{\pi}{4}}

2.1 1 + 1 2 = 2 y 2 y 2 4 + 2 y 2 y 2 4 2 0 = 2 y 2 4 y + 1 y = 2 \implies \displaystyle \frac{2.1}{1+1^2}=\frac{2^{-y}}{2^{-\frac{y^2}{4}}}+\frac{2^{-y}}{2^{-\frac{y^2}{4}}} \implies 2^0=2^{\frac{y^2}{4}-y+1} \implies y=2

As there is only the solution ( π 4 , 2 ) (\frac{\pi}{4}, 2) , α \alpha required for the problem is α = 2 π 3 \alpha=\frac{2 \pi}{3} . The given ( 3 n + 1 ) α (3n+1)\alpha angles happens to have the same trigonometric functions as each one is a complete number of 2 π 2 \pi rotations from another.

The sum has 100 terms ( 1 1 3 = 0 , 298 1 3 = 99 , 99 0 + 1 = 100 terms \frac{1-1}{3}=0, \frac{298-1}{3}=99, 99-0+1=100 \text{ terms} ) each of which is s i n 12 0 o = 3 2 sin \ 120^o=\frac{\sqrt{3}}{2} . Then, answer is 100 3 2 = 50 3 100 \ \frac{\sqrt{3}}{2}=50 \ \sqrt{3} . Thus, a + b = 50 + 3 = 53 a+b=50+3=\boxed{53}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...