cos 2 y 2 x sin 2 y x + sin 2 y 2 x cos 2 y x = 1 + tan 2 x 2 tan x
There are
n
pairs of real numbers
x
,
y
, such that
x
∈
(
0
,
2
π
)
, that satisfy the above equation.
Let
α
=
3
4
(
x
1
y
1
+
x
2
y
2
+
⋯
+
x
n
y
n
)
Then the value of ( sin α + sin 4 α + sin 7 α + ⋯ + sin 2 9 8 α ) can be expressed as a b , where a and b are positive integers with b is square free. Find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First, let's do some transformations:
1 + t a n 2 x 2 t a n x × c o s 2 x c o s 2 x = 2 s i n x c o s x = s i n 2 x
c o s 2 y 2 x s i n 2 y x + s i n 2 y 2 x c o s 2 y x = c o s 2 y 2 x s i n 2 y x × s i n 2 y 2 x s i n 2 y 2 x + s i n 2 y 2 x c o s 2 y x × c o s 2 y 2 x c o s 2 y 2 x ⟹
⟹ c o s 2 y 2 x s i n 2 y x + s i n 2 y 2 x c o s 2 y x = ( s i n x c o s x ) 2 y 2 s i n 2 y 2 + 2 y x + c o s 2 y 2 + 2 y x ⟹
⟹ c o s 2 y 2 x s i n 2 y x + s i n 2 y 2 x c o s 2 y x = ( 2 s i n x c o s x ) 2 y 2 2 2 y 2 ( s i n 2 y 2 + 2 y x + c o s 2 y 2 + 2 y x ) ⟹
⟹ c o s 2 y 2 x s i n 2 y x + s i n 2 y 2 x c o s 2 y x = ( s i n 2 x ) 2 y 2 2 2 y 2 ( s i n 2 y 2 + 2 y x + c o s 2 y 2 + 2 y x )
For equality to hold:
( s i n 2 x ) 2 y 2 2 2 y 2 ( s i n 2 y 2 + 2 y x + c o s 2 y 2 + 2 y x ) = s i n 2 x ⟹
⟹ 2 2 y 2 ( s i n 2 y 2 + 2 y x + c o s 2 y 2 + 2 y x ) = ( s i n 2 x ) 2 y 2 + 1
Now, define f ( x ) and g ( x ) as:
f ( x ) = 2 2 y 2 ( s i n 2 y 2 + 2 y x + c o s 2 y 2 + 2 y x )
g ( x ) = ( s i n 2 x ) 2 y 2 + 1
Derivating both f ( x ) and g ( x ) and equating to zero, one can find the critical points of the functions:
f ′ ( x ) = 2 2 y 2 ( 2 y 2 + 2 y ) ( s i n 2 y 2 − 2 y − 1 x c o s x − c o s 2 y 2 − 2 y − 1 x s i n x )
f ′ ( x ) = 0 ⟹ s i n 2 y 2 − 2 y − 1 x c o s x = c o s 2 y 2 − 2 y − 1 x s i n x
f ′ ( x ) = 0 ⟹ s i n 2 y 2 − 2 y − 2 x = c o s 2 y 2 − 2 y − 2 x ⟹ x = 4 ( 2 k + 1 ) π , k ∈ Z
g ′ ( x ) = ( 2 y 2 + 1 ) ( s i n 2 x ) 2 y 2 2 c o s 2 x
g ′ ( x ) = 0 ⟹ ( s i n 2 x ) 2 y 2 = 0 ∨ c o s 2 x = 0 ⟹ x = 0 ∨ x = 4 ( 2 k + 1 ) π , k ∈ Z
Second derivative test shows us how do f ( x ) and g ( x ) increase or decrease, and that x = 4 π (since x ∈ ( 0 , 2 π ) ) is a maximum for g ( x ) and a minimum for g ( x ) ( x = 0 is an inflection point).
Sketching both graphs, for any y (in fact, the variation of y defines a family of curves on the plane x y ), f ( x ) is greater than g ( x ) everywhere, except for some y , at minimum of f ( x ) and maximum of g ( x ) , where they're equal, verifying equality proposed. Substituting, gives:
1 + t a n 2 4 π 2 t a n 4 π = c o s 2 y 2 4 π s i n 2 y 4 π + s i n 2 y 2 4 π c o s 2 y 4 π
⟹ 1 + 1 2 2 . 1 = 2 − 4 y 2 2 − y + 2 − 4 y 2 2 − y ⟹ 2 0 = 2 4 y 2 − y + 1 ⟹ y = 2
As there is only the solution ( 4 π , 2 ) , α required for the problem is α = 3 2 π . The given ( 3 n + 1 ) α angles happens to have the same trigonometric functions as each one is a complete number of 2 π rotations from another.
The sum has 100 terms ( 3 1 − 1 = 0 , 3 2 9 8 − 1 = 9 9 , 9 9 − 0 + 1 = 1 0 0 terms ) each of which is s i n 1 2 0 o = 2 3 . Then, answer is 1 0 0 2 3 = 5 0 3 . Thus, a + b = 5 0 + 3 = 5 3