sin 1 ∘ × sin 2 ∘ × sin 3 ∘ × ⋯ × sin 8 9 ∘ × sin 9 0 ∘ = c d a b
The equation above holds true for primes a and c , and positive integers b and d with b being square-free. Find a + b + c + d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I will add a proof of the formula used by Chew-Seong Cheong.
Let P = X n − 1 .
Using the roots of unity, we have:
P = ( X − 1 ) k = 1 ∏ n − 1 ( X − e n i 2 k π )
Therefore,
Q = X − 1 X n − 1 = X n − 1 + X n − 2 + ⋯ + 1 = k = 1 ∏ n − 1 ( X − e n i 2 k π )
Plugging 1 into Q :
n = k = 1 ∏ n − 1 ( 1 − e n i 2 k π ) = k = 1 ∏ n − 1 e n i k π ( e n − i k π − e n i k π ) = k = 1 ∏ n − 1 − 2 i e n i k π sin ( n k π ) = ( − 1 ) n − 1 i n − 1 2 n − 1 ( e n i π ) 2 n ( n − 1 ) k = 1 ∏ n − 1 sin ( n k π ) = ( − 1 ) n − 1 i n − 1 2 n − 1 ( e 2 i π ) n − 1 k = 1 ∏ n − 1 sin ( n k π ) = ( − 1 ) n − 1 i n − 1 2 n − 1 i n − 1 k = 1 ∏ n − 1 sin ( n k π ) = ( − 1 ) n − 1 ( i 2 ) n − 1 2 n − 1 k = 1 ∏ n − 1 sin ( n k π ) = ( − 1 ) n − 1 ( − 1 ) n − 1 2 n − 1 k = 1 ∏ n − 1 sin ( n k π ) = 2 n − 1 k = 1 ∏ n − 1 sin ( n k π )
So,
k = 1 ∏ n − 1 sin ( n k π ) = 2 n − 1 n
Problem Loading...
Note Loading...
Set Loading...
From the reference (equation (24)) , we have k = 1 ∏ n − 1 sin ( n k π ) = 2 1 − n n . Then
k = 1 ∏ 1 7 9 sin ( 1 8 0 k π ) ⟹ k = 1 ∏ 1 7 9 sin k ∘ k = 1 ∏ 9 0 sin k ∘ k = 9 1 ∏ 1 7 9 sin k ∘ k = 1 ∏ 9 0 sin k ∘ k = 1 ∏ 8 9 sin k ∘ k = 1 ∏ 9 0 sin k ∘ k = 1 ∏ 9 0 sin k ∘ = 2 1 7 9 1 8 0 = 2 1 7 9 1 8 0 = 2 1 7 9 1 8 0 = 2 1 7 9 1 8 0 = 2 1 7 9 1 8 0 Since sin ( 1 8 0 − x ) ∘ = sin x ∘ Since sin 9 0 ∘ = 1
⟹ k = 1 ∏ 9 0 sin k ∘ = 2 1 7 9 1 8 0 = 2 8 9 3 1 0
Therefore, a + b + c + d = 3 + 1 0 + 2 + 8 9 = 1 0 4 .