'sin'tiplying

Geometry Level 5

sin 1 × sin 2 × sin 3 × × sin 8 9 × sin 9 0 = a b c d \sin1^\circ\times \sin2^\circ\times \sin3^\circ\times\cdots\times \sin89^\circ\times \sin90^\circ=\frac{a\sqrt{b}}{c^d}

The equation above holds true for primes a a and c c , and positive integers b b and d d with b b being square-free. Find a + b + c + d a+b+c+d .


Try my set here .


The answer is 104.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From the reference (equation (24)) , we have k = 1 n 1 sin ( k π n ) = 2 1 n n \displaystyle \prod_{k=1}^{n-1} \sin \left(\frac {k\pi}n\right) = 2^{1-n} n . Then

k = 1 179 sin ( k π 180 ) = 180 2 179 k = 1 179 sin k = 180 2 179 k = 1 90 sin k k = 91 179 sin k = 180 2 179 Since sin ( 180 x ) = sin x k = 1 90 sin k k = 1 89 sin k = 180 2 179 Since sin 9 0 = 1 k = 1 90 sin k k = 1 90 sin k = 180 2 179 \begin{aligned} \prod_{k=1}^{179} \sin \left(\frac {k\pi}{180}\right) & = \frac {180}{2^{179}} \\ \implies \prod_{k=1}^{179} \sin k^\circ & = \frac {180}{2^{179}} \\ \prod_{k=1}^{90} \sin k^\circ \color{#3D99F6} \prod_{k=91}^{179} \sin k^\circ & = \frac {180}{2^{179}} & \small \color{#3D99F6} \text{Since }\sin (180-x)^\circ = \sin x^\circ \\ \prod_{k=1}^{90} \sin k^\circ \color{#3D99F6} \prod_{k=1}^{89} \sin k^\circ & = \frac {180}{2^{179}} & \small \color{#3D99F6} \text{Since }\sin 90^\circ = 1 \\ \prod_{k=1}^{90} \sin k^\circ \color{#3D99F6} \prod_{k=1}^{\color{#D61F06}90} \sin k^\circ & =\frac {180}{2^{179}} \end{aligned}

k = 1 90 sin k = 180 2 179 = 3 10 2 89 \begin{aligned} \implies \prod_{k=1}^{90} \sin k^\circ & = \sqrt{\frac {180}{2^{179}}} = \frac {3\sqrt{10}}{2^{89}} \end{aligned}

Therefore, a + b + c + d = 3 + 10 + 2 + 89 = 104 a+b+c+d = 3+10+2+89 = \boxed{104} .

Théo Leblanc
Aug 17, 2019

I will add a proof of the formula used by Chew-Seong Cheong.

Let P = X n 1 P=X^{n}-1 .

Using the roots of unity, we have:

P = ( X 1 ) k = 1 n 1 ( X e i 2 k π n ) P=(X-1)\displaystyle\prod_{k=1}^{n-1}(X-e^{\frac{i2k\pi}{n}})

Therefore,

Q = X n 1 X 1 = X n 1 + X n 2 + + 1 = k = 1 n 1 ( X e i 2 k π n ) \begin{aligned} Q & =\dfrac{X^{n}-1}{X-1}=X^{n-1}+X^{n-2}+\cdots + 1\\ & =\displaystyle\prod_{k=1}^{n-1}(X-e^{\frac{i2k\pi}{n}}) \end{aligned}

Plugging 1 1 into Q Q :

n = k = 1 n 1 ( 1 e i 2 k π n ) = k = 1 n 1 e i k π n ( e i k π n e i k π n ) = k = 1 n 1 2 i e i k π n sin ( k π n ) = ( 1 ) n 1 i n 1 2 n 1 ( e i π n ) n ( n 1 ) 2 k = 1 n 1 sin ( k π n ) = ( 1 ) n 1 i n 1 2 n 1 ( e i π 2 ) n 1 k = 1 n 1 sin ( k π n ) = ( 1 ) n 1 i n 1 2 n 1 i n 1 k = 1 n 1 sin ( k π n ) = ( 1 ) n 1 ( i 2 ) n 1 2 n 1 k = 1 n 1 sin ( k π n ) = ( 1 ) n 1 ( 1 ) n 1 2 n 1 k = 1 n 1 sin ( k π n ) = 2 n 1 k = 1 n 1 sin ( k π n ) \begin{aligned} n & =\displaystyle\prod_{k=1}^{n-1}(1-e^{\frac{i2k\pi}{n}})\\ & = \displaystyle\prod_{k=1}^{n-1} e^{\frac{ik\pi}{n}} ( e^{\frac{-ik\pi}{n}} -e^{\frac{ik\pi}{n}})\\ & = \displaystyle\prod_{k=1}^{n-1} -2i e^{\frac{ik\pi}{n}} \sin(\frac{k\pi}{n}) \\ & = (-1)^{n-1} i^{n-1} 2^{n-1} (e^{\frac{i\pi}{n}})^{\frac{n(n-1)}{2}} \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})\\ & = (-1)^{n-1} i^{n-1} 2^{n-1} (e^{\frac{i\pi}{2}})^{n-1} \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})\\ & = (-1)^{n-1} i^{n-1} 2^{n-1} i^{n-1} \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})\\ & = (-1)^{n-1} (i^2)^{n-1} 2^{n-1} \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})\\ & = (-1)^{n-1} (-1)^{n-1} 2^{n-1} \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})\\ & = 2^{n-1} \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n}) \end{aligned}

So,

k = 1 n 1 sin ( k π n ) = n 2 n 1 \displaystyle\prod_{k=1}^{n-1}\sin(\frac{k\pi}{n})=\dfrac{n}{2^{n-1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...