Sinusoidal Functions

Geometry Level 2

f ( x ) = 3 cos ( π x + 2 ) 6 \large f(x)=-3\cos(\pi x+2)-6

What is the fundamental period of the function f ( x ) f(x) above?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let the period be p p , then we have f ( x + p ) = f ( x ) f(x+p) = f(x) .

f ( x + p ) = 3 cos ( π ( x + p ) + 2 ) 6 = 3 cos ( π x + 2 + p x ) 6 = 3 cos ( π x + 2 ) cos p x + 3 sin ( π x + 2 ) sin p x 6 Putting p = 2 = 3 cos ( π x + 2 ) cos 2 x + 3 sin ( π x + 2 ) sin 2 x 6 = 3 cos ( π x + 2 ) 6 = f ( x ) \begin{aligned} f(x+p) & = - 3\cos(\pi(x+{\color{#3D99F6}p})+2) - 6 \\ & = - 3\cos(\pi x+2+{\color{#3D99F6}px}) - 6 \\ & = - 3\cos(\pi x+2) \cos{\color{#3D99F6}px} + 3\sin(\pi x+2) \sin{\color{#3D99F6}px} - 6 & \small \color{#3D99F6} \text{Putting }p=2 \\ & = - 3\cos(\pi x+2) \cos{\color{#3D99F6}2x} + 3\sin(\pi x+2) \sin{\color{#3D99F6}2x} - 6 \\ & = - 3\cos(\pi x+2) - 6 \\ & = f(x) \end{aligned}

\implies The period p = 2 p = \boxed{2} .

Zach Abueg
Apr 5, 2017

The general form of a transformed sin x \sin x or cos x \cos x function is

a cos [ b ( x + c ) ] + d \displaystyle a\cos[b(x + c)] + d

where its period equals 2 π b \displaystyle \frac{2\pi}{b} .

In f ( x ) = 3 cos ( π x + 2 ) 6 \displaystyle f(x) = -3\cos(\pi x + 2) - 6 ,

b = π \displaystyle b = \pi .

P = 2 π b = 2 π π = 2 \displaystyle P = \frac{2\pi}{b} = \frac{2\pi}{\pi} = 2

Factored Radical
Apr 5, 2017

The answer is 2.

Plz hit dat like

Factored Radical - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...