sin x = 2 \sin x=2 ?

Algebra Level 3

Solve sin x = 2 \sin x = 2 for x x .

Notations:

  • k k in the answer options denotes an integer.
  • i = 1 i = \sqrt{-1} denotes the imaginary unit .
4 k + 1 2 π i ln ( 2 ± 3 ) \small \frac {4k+1}{2}\pi - i\ln(2 \pm \sqrt{3}) 4 k 1 2 π i ln ( 2 ± 3 ) \small \frac {4k-1}{2}\pi - i\ln(2 \pm \sqrt{3}) 4 k + 1 2 π + i ln ( 3 ± 3 ) \small \frac {4k+1}{2}\pi + i\ln(3 \pm \sqrt{3}) 4 k 1 2 π + i ln ( 2 ± 3 ) \small \frac {4k-1}{2}\pi + i\ln(2 \pm \sqrt{3})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Raymond Fang
Jan 24, 2021

e i x = cos x + i sin x e i x = cos x i sin x e i x e i x = 2 i sin x e i x e i x = 2 i × 2 = 4 i e i x = 1 e i x e^{ix}=\cos x+i\sin x \newline e^{-ix}=\cos x-i\sin x \newline e^{ix}-e^{-ix}=2i \sin x \newline e^{ix}-e^{-ix}=2i \times 2 = 4i \newline e^{-ix} = \frac{1}{e^{ix}} , so let t = e i x t = e^{ix} , and t 1 t = 4 i t 2 ( 4 i ) t 1 = 0. t-\frac{1}{t}=4i \newline t^2-(4i)t-1=0. \newline Find the root formula with a quadratic equation in one variable: b ± b 2 4 a c 2 a \frac{-b \pm \sqrt{b^2-4ac}}{2a} , inferred t = 4 i ± 16 + 4 2 = 2 i ± 3 = ( 2 ± 3 ) i . \newline t = \frac{4i \pm \sqrt{-16+4}}{2} \newline = 2i \pm \sqrt{-3} \newline = (2 \pm \sqrt{3})i. \newline e i x = ( 2 ± 3 ) i i x = ln ( ( 2 ± 3 ) i ) = ln ( 2 ± 3 ) + ln ( i ) . e^{ix}=(2 \pm \sqrt{3})i \newline ix = \ln((2 \pm \sqrt{3})i) \newline = \ln(2 \pm \sqrt{3}) + \ln(i). \newline It seems to be one step away from success, but what is ln ( i ) \ln(i) ? \newline Let i θ = ln ( i ) i \theta = \ln(i) , inferred \newline e i θ = cos θ + i sin θ i = cos θ + i sin θ . e^{i \theta}=\cos \theta + i \sin \theta \newline i = \cos \theta + i \sin \theta. \newline The real number part on the left side of the equation is 0, so the real number part on the right side of the equation is also 0, that is, cos θ = 0. \cos \theta = 0. \newline The same, sin θ = 1. \sin \theta = 1. \newline So θ = 4 k + 1 2 π \theta = \frac{4k+1}{2} \pi (k is an integer). \newline So i x = 4 k + 1 2 i π + ln ( 2 ± 3 ) x = 4 k + 1 2 π + 1 1 ln ( 2 ± 3 ) = 4 k + 1 2 π i ln ( 2 ± 3 ) ix = \frac{4k+1}{2}i \pi + \ln(2 \pm \sqrt{3}) \newline x = \frac{4k+1}{2} \pi + \frac{1}{\sqrt{-1}} \ln(2 \pm \sqrt{3}) \newline = \frac{4k+1}{2} \pi - i \ln(2 \pm \sqrt{3}) (k is an integer).

Chew-Seong Cheong
Jan 25, 2021

sin x = 2 By Euler’s formula: e θ i = cos θ + i sin θ e i x e i x 2 i = 2 e i x e i x = 4 i Multiply both sides by e i x and rearrange. e 2 i x 4 i e i x 1 = 0 Solve the quadratic equation for e i x e i x = 4 i ± 16 + 4 2 = i ( 2 ± 3 ) Take natural log both sides i x = ln i + ln ( 2 ± 3 ) = ln ( e ( 2 k + 1 2 ) π i ) + ln ( 2 ± 3 ) where k is an integer. = 4 k + 1 2 π i + ln ( 2 ± 3 ) Divide both sides by i x = 4 k + 1 2 π i ln ( 2 ± 3 ) \begin{aligned} \blue{\sin x} & = 2 & \small \blue{\text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta} \\ \blue{\frac {e^{ix}-e^{-ix}}{2i}} & = 2 \\ e^{ix}-e^{-ix} & = 4i & \small \blue{\text{Multiply both sides by }e^{ix} \text{ and rearrange.}} \\ e^{2ix} - 4ie^{ix} - 1 & = 0 & \small \blue{\text{Solve the quadratic equation for }e^{ix}} \\ e^{ix} & = \frac {4i \pm \sqrt{-16+4}}2 \\ & = i(2 \pm \sqrt 3) & \small \blue{\text{Take natural log both sides}} \\ ix & = \ln i + \ln (2 \pm \sqrt 3) \\ & = \ln \left(e^{\left(2k + \frac 12\right) \pi i} \right) + \ln (2 \pm \sqrt 3) & \small \blue{\text{where }k \text{ is an integer.}} \\ & = \frac {4k+1}2 \pi i + \ln (2 \pm \sqrt 3) & \small \blue{\text{Divide both sides by }i} \\ \implies x & = \boxed{\frac {4k+1}2\pi - i \ln (2 \pm \sqrt 3)} \end{aligned}


Reference: Euler's formula

Great solution! But how can you align equal signs and add the blue note?? I'm not good at LaTeX :|

Raymond Fang - 4 months, 2 weeks ago

Log in to reply

Hope that this help.

Chew-Seong Cheong - 4 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...