sin x = a \sin x=a

Algebra Level 3

In the previous problem , we have solve sin x = 2 \sin x = 2 for x x . To generalize we now solve sin x = a \sin x = a for x x , where a > 1 a > 1 .

Notations:

  • k k in the answer options denotes an integer.
  • i = 1 i = \sqrt{-1} denotes the imaginary unit .
4 k 1 2 π i ln ( a ± a 2 1 ) \frac{4k-1}{2} \pi - i \ln(a\pm \sqrt{a^2-1}) 4 k 1 2 π + i ln ( a ± a 2 1 ) \frac{4k-1}{2} \pi + i \ln(a\pm \sqrt{a^2-1}) 4 k + 1 2 π + i ln ( 2 a ± a 2 1 ) \frac{4k+1}{2} \pi + i \ln(2a\pm \sqrt{a^2-1}) 4 k + 1 2 π i ln ( a ± a 2 1 ) \frac{4k+1}{2} \pi - i \ln(a\pm \sqrt{a^2-1})

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 25, 2021

sin x = a By Euler’s formula: e θ i = cos θ + i sin θ e i x e i x 2 i = a e i x e i x = 2 a i Multiply both sides by e i x and rearrange. e 2 i x 2 a i e i x 1 = 0 Solve the quadratic equation for e i x e i x = 2 a i ± 4 a 2 + 4 2 Note that a > 1 = i ( a ± a 2 1 ) Take natural log both sides i x = ln i + ln ( 2 ± a 2 1 ) = ln ( e ( 2 k + 1 2 ) π i ) + ln ( 2 ± a 2 1 ) where k is an integer. = 4 k + 1 2 π i + ln ( 2 ± a 2 1 ) Divide both sides by i x = 4 k + 1 2 π i ln ( 2 ± a 2 1 ) \begin{aligned} \blue{\sin x} & = a & \small \blue{\text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta} \\ \blue{\frac {e^{ix}-e^{-ix}}{2i}} & = a \\ e^{ix}-e^{-ix} & = 2ai & \small \blue{\text{Multiply both sides by }e^{ix} \text{ and rearrange.}} \\ e^{2ix} - 2aie^{ix} - 1 & = 0 & \small \blue{\text{Solve the quadratic equation for }e^{ix}} \\ e^{ix} & = \frac {2ai \pm \sqrt{-4a^2+4}}2 & \small \blue{\text{Note that }a > 1} \\ & = i(a \pm \sqrt{a^2-1}) & \small \blue{\text{Take natural log both sides}} \\ ix & = \ln i + \ln (2 \pm \sqrt{a^2-1}) \\ & = \ln \left(e^{\left(2k + \frac 12\right) \pi i} \right) + \ln (2 \pm \sqrt{a^2-1}) & \small \blue{\text{where }k \text{ is an integer.}} \\ & = \frac {4k+1}2 \pi i + \ln (2 \pm \sqrt {a^2-1}) & \small \blue{\text{Divide both sides by }i} \\ \implies x & = \boxed{\frac {4k+1}2\pi - i \ln (2 \pm \sqrt {a^2-1})} \end{aligned}


Reference: Euler's formula

Great solution!

Raymond Fang - 4 months, 2 weeks ago
Raymond Fang
Jan 25, 2021

You must look at the solution I gave to the question sinx=2? so that you can understand the solution. Let t = e i x t = e^{ix} , so t 1 t = 2 i × a t 2 ( 2 a i ) t 1 = 0 t = 2 a i ± 4 a 2 + 4 2 = a i ± 1 a 2 . t - \frac{1}{t} = 2i \times a \newline t^2 - (2ai)t - 1 = 0 \newline t = \frac{2ai \pm \sqrt{-4a^2+4}}{2} \newline = ai \pm \sqrt{1-a^2}. \newline Because a > 1 a > 1 , so 1 a 2 < 0 \sqrt{1-a^2} < 0 and a i ± 1 a 2 = a i ± a 2 1 i = i ( a ± a 2 1 ) . e i x = i ( a ± a 2 1 ) i x = ln ( i ) + ln ( a ± a 2 1 ) x = 4 k + 1 2 π i ln ( a ± a 2 1 ) ai \pm \sqrt{1-a^2} = ai \pm \sqrt{a^2-1}i \newline = i(a \pm \sqrt{a^2-1}). \newline e^{ix} = i(a \pm \sqrt{a^2-1}) \newline ix = \ln(i) + \ln(a \pm \sqrt{a^2-1}) \newline \boxed{x = \frac{4k+1}{2} \pi - i\ln(a \pm \sqrt{a^2-1})} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...