Six times of x \displaystyle{x} and cosine raised to eight...

Calculus Level 5

0 π cos 6 x cos 8 x d x \int_{0}^{\pi} \cos 6x \cos^8 x\ dx

If you liked the problem try more here .


The answer is 0.0981.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arif Ahmed
Oct 16, 2014

1 1 ..Integration of an c o s k x cos kx where k k is an integer gives s i n k x k \frac {sin kx}{k} , and the sine of any integral multiple of π \pi gives 0 0 .

2 2 ..Also summation and difference of two integers yields an integer.

In the given expression use 1 + c o s 2 x = 2 c o s 2 x 1 + cos 2x = 2{cos}^{2}{x} until you come to this : 1 64 0 π c o s 6 x ( 3 + c o s 4 x + 4 c o s 2 x ) 2 d x \frac{1}{64}\int_{0}^{\pi}{cos 6x{(3+cos 4x + 4cos 2x)}^{2}} dx .

Now because of 1 1 and 2 2 almost all terms will yield zero after integration and substitution.Now,instead of going down the warpath and expanding the whole expression and then applying multiple angle formulas(like I foolishly did -_- ),let's pause a bit.

We need to find a term that is independent of x x .Everything is being multiplied by c o s 6 x cos 6x .So,what integral multiple of x x when combined with 6 x 6x will give that?Its 6 x -6x obviously.

Now,in the expansion of the inner part we get one of the terms as 4 c o s 2 x c o s 4 x 4 cos 2x cos 4x .Now , 2 c o s 2 x c o s 4 x = c o s 6 x + c o s 2 x 2 cos 2x cos 4x = cos 6x + cos 2x .The c o s 2 x cos 2x does not matter.The c o s 6 x cos 6x does.Then the integral should be 4 c o s 6 x c o s 6 x 4 cos 6x cos 6x and many other terms which are not important.Now, 4 c o s 6 x c o s 6 x = 2 ( 1 + c o s 12 x ) 4 cos 6x cos 6x = 2(1 +cos 12x ) .Once again the c o s 12 x cos 12x is not important. Therefore the integral is 1 64 0 π 2 + o t h e r . . u n i m p o r t a n t . . t e r m s d x \frac{1}{64}\int_{0}^{\pi}{2+ other..unimportant..terms}dx ,which yields π 32 \frac{\pi}{32} .

The cosine function obeys the following identity:

c o s ( n θ ) = 2 cos θ cos [ ( n 1 ) θ ] cos [ ( n 2 ) θ ] cos θ cos ( n θ ) = cos [ ( n + 1 ) θ ] + cos [ ( n 1 ) θ ] 2 \begin{aligned} cos (n\theta) & = 2\cos \theta \cos [(n-1)\theta] - \cos[(n-2)\theta] \\ \implies \cos \theta \cos (n\theta) & = \frac {\cos[(n+1)\theta] + \cos [(n-1)\theta]}2 \end{aligned}

Therefore,

cos 8 x cos 6 x = cos 7 x 2 ( cos 7 x + cos 5 x ) = cos 6 x 4 ( cos 8 x + 2 cos 6 x + cos 4 x ) = cos 5 x 8 ( cos 9 x + 3 cos 7 x + 3 cos 5 x + cos 3 x ) = cos 2 x 64 ( cos 12 x + 6 cos 10 x + 15 cos 8 x + 20 cos 6 x + 15 cos 4 x + 6 cos 2 x + 1 ) = 1 + cos 2 x 128 ( cos 12 x + 6 cos 10 x + 15 cos 8 x + 20 cos 6 x + 15 cos 4 x + 6 cos 2 x + 1 ) = cos 14 x + 8 cos 12 x + 28 cos 10 x + 56 cos 8 x + 70 cos 6 x + 56 cos 4 x + 28 cos 2 x + 8 256 \begin{aligned} \cos^8 x \cos 6x & = \frac {\cos^7 x}2 (\cos 7x + \cos 5x) \\ & = \frac {\cos^6 x}4 (\cos 8x + 2\cos 6x + \cos 4x) \\ & = \frac {\cos^5 x}8 (\cos 9x + 3\cos 7x + 3\cos 5x + \cos 3x) \\ & = \frac {\cos^2 x}{64} (\cos 12x + 6\cos 10x + 15\cos 8x + 20\cos 6x + 15\cos 4x + 6\cos 2x + 1) \\ & = \frac {1+\cos 2x}{128} (\cos 12x + 6\cos 10x + 15\cos 8x + 20\cos 6x + 15\cos 4x + 6\cos 2x + 1) \\ & = \frac {\cos 14x + 8\cos 12 x + 28\cos 10x + 56\cos 8x + 70 \cos 6x + 56\cos 4x + 28\cos 2x +8}{256} \end{aligned}

Therefore,

0 π cos 6 x cos 8 x d x = 1 256 0 π ( cos 14 x + 8 cos 12 x + + 28 cos 2 x + 8 ) d x = 1 256 [ sin 14 x 14 + 8 sin 12 x 12 + + 28 sin 2 x 2 + 8 x ] 0 π = 8 256 π = π 32 0.0982 \begin{aligned} \int_0^\pi \cos 6x \cos^8 x \ dx & = \frac 1{256} \int_0^\pi (\cos 14x + 8\cos 12 x + \cdots + 28\cos 2x +8)\ dx \\ & = \frac 1{256} \left[\frac {\sin 14x}{14} + \frac {8\sin 12x}{12} + \cdots + \frac {28\sin 2x}2 +8x \right]_0^\pi \\ & = \frac 8{256}\pi = \frac \pi{32} \approx \boxed{0.0982} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...