Sixteens!

How many times 16 2 { 16 }^{ 2 } should appear under the square root sign for the following equation to be true:

16 2 + 16 2 + 16 2 + . . . + 16 2 + 16 2 + 16 2 = 16 16 \sqrt { { 16 }^{ 2 }+{ 16 }^{ 2 }+{ 16 }^{ 2 }+...+{ 16 }^{ 2 }+{ 16 }^{ 2 }+{ 16 }^{ 2 } }={16}^{16} ?

Try this one

16 256 { 16 }^{ 256 } 16 16 { 16 }^{ 16 } 16 16 16 30 { 16 }^{ 30 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rewriting this equation:

16 2 + 16 2 + 16 2 + . . . + 16 2 + 16 2 + 16 2 = 16 16 \sqrt { { 16 }^{ 2 }+{ 16 }^{ 2 }+{ 16 }^{ 2 }+...+{ 16 }^{ 2 }+{ 16 }^{ 2 }+{ 16 }^{ 2 } }={16}^{16} becomes n 16 2 = 16 16 \sqrt {n\cdot{16}^{2}}={16}^{16} .

Solving:

n 16 2 = 16 16 \sqrt {n\cdot{16}^{2}}={16}^{16}

16 n = 16 16 16\sqrt { n } ={ 16 }^{ 16 }

n = 16 15 \sqrt { n } ={ 16 }^{ 15 }

n = 16 30 n={ 16 }^{30 }

Let the number of times 1 6 2 16^{2} comes under the square root be x x . Then, x × 1 6 2 = 1 6 16 x × 1 6 2 = ( 1 6 16 ) 2 = 1 6 32 x = 1 6 32 1 6 2 = 1 6 30 \sqrt {x \times 16^{2}} = 16^{16} \Rightarrow x \times 16^{2} =(16^{16})^{2}=16^{32} \Rightarrow x = \dfrac{16^{32}}{16^{2}} = \boxed{16^{30}} .

Let x be the number of times 16^2 should appear. We find x to be equal to 16^15. Squaring it we get 16^30

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...