f satisfies
f ( x ) = − 1 0 1 x 3 ( 1 0 1 x 3 f ( 6 ) ( x ) + 1 0 9 x 2 f ( 5 ) ( x ) + 5 9 x f ( 4 ) ( x ) + 5 3 f ( 3 ) ( x ) ) ,
f ( 1 ) = 0 , f ′ ( 1 ) = 0 , f ′ ′ ( 1 ) = 0 , f ( 3 ) ( 1 ) = 0 , f ( 4 ) ( 1 ) = 0 , and f ( 5 ) ( 1 ) = 3 5 2 0
If f ( e π ) = e a π − e − π , where a is an integer, find a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Looking for solutions of the form x u , we see that we must satisfy the equation u ( u − 1 ) ( u − 2 ) ( u − 3 ) ( u − 4 ) ( u − 5 ) + 9 u ( u − 1 ) ( u − 2 ) ( u − 3 ) ( u − 4 ) + 1 8 u ( u − 1 ) ( u − 2 ) ( u − 3 ) + 6 u ( u − 1 ) ( u − 2 ) u 2 ( u − 1 ) 2 ( u − 2 ) 2 + 1 0 0 = − 1 0 0 = 0 which has solutions u = − 1 ± i , u = 1 ± 2 i , 3 ± i . Thus the general solution of the differential equation is f ( x ) = x A cos ( ln x ) + B sin ( ln x ) + x ( C cos ( 2 ln x ) + D sin ( 2 ln x ) ) + x 3 ( E cos ( ln x ) + F sin ( ln x ) ) x > 0 for constants A , B , C , D , E , F . Matching the initial conditions, we deduce that f ( x ) = 3 x 3 cos ( ln x ) + 2 sin ( ln x ) + 3 4 x sin ( 2 ln x ) − 3 1 x 3 ( 3 cos ( ln x ) − 2 sin ( ln x ) ) x > 0 and this gives f ( e π ) = e 3 π − e − π , making the answer 3 .