sin 6 1 ∘ + sin 6 2 ∘ + sin 6 3 ∘ + ⋯ + sin 6 8 9 ∘ = n m
The equation above holds true for coprime positive numbers m and n . Submit m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = sin 6 1 ∘ + sin 6 2 ∘ + sin 6 3 ∘ + ⋯ + sin 6 8 9 ∘ = k = 1 ∑ 8 9 sin 6 k ∘ = k = 1 ∑ 4 4 sin 6 k ∘ + sin 6 4 5 ∘ + k = 4 6 ∑ 8 9 sin 6 k ∘ = k = 1 ∑ 4 4 sin 6 k ∘ + 8 1 + k = 4 6 ∑ 8 9 cos 6 ( 9 0 − k ) ∘ = k = 1 ∑ 4 4 sin 6 k ∘ + 8 1 + k = 1 ∑ 4 4 cos 6 k ∘ = k = 1 ∑ 4 4 sin 6 k ∘ + 8 1 + k = 1 ∑ 4 4 ( 1 − sin 2 k ∘ ) 3 = k = 1 ∑ 4 4 sin 6 k ∘ + 8 1 + k = 1 ∑ 4 4 ( 1 − 3 sin 2 k ∘ + 3 sin 4 k ∘ − sin 6 k ∘ ) = 8 1 + k = 1 ∑ 4 4 1 − 3 k = 1 ∑ 4 4 sin 2 k ∘ ( 1 − sin 2 k ∘ ) = 8 1 + 4 4 − 3 k = 1 ∑ 4 4 sin 2 k ∘ cos 2 k ∘ = 8 3 5 3 − 4 3 k = 1 ∑ 4 4 sin 2 2 k ∘ = 8 3 5 3 − 4 3 ( k = 1 ∑ 2 2 sin 2 2 k ∘ + k = 2 3 ∑ 4 4 cos 2 ( 9 0 − 2 k ) ∘ ) = 8 3 5 3 − 4 3 ( k = 1 ∑ 2 2 sin 2 2 k ∘ + k = 1 ∑ 2 2 cos 2 2 k ∘ ) = 8 3 5 3 − 4 3 k = 1 ∑ 2 2 1 = 8 3 5 3 − 4 6 6 = 8 2 2 1
⟹ m + n = 2 2 1 + 8 = 2 2 9
Problem Loading...
Note Loading...
Set Loading...
S = sin 6 1 ∘ + sin 6 2 ∘ + sin 6 3 ∘ + ⋯ + sin 6 8 9 ∘
Using the fact that sin 6 θ = cos 6 ( 9 0 − θ ) , S = sin 6 1 ∘ + sin 6 2 ∘ + sin 6 3 ∘ + ⋯ + sin 6 4 5 ∘ + cos 6 4 4 ∘ + cos 6 4 3 ∘ + cos 6 4 2 ∘ + ⋯ + cos 6 1 ∘ = ( sin 6 1 ∘ + cos 6 1 ∘ ) + ( sin 6 2 ∘ + cos 6 2 ∘ ) + ( sin 6 3 ∘ + cos 6 3 ∘ ) + ⋯ + ( sin 6 4 4 ∘ + cos 6 4 4 ∘ ) + sin 6 4 5 ∘
Using the factorization a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) = ( a + b ) ( ( a + b ) 2 − 3 a b ) and substituting a = sin 2 θ , b = cos 2 θ we get, sin 6 θ + cos 6 θ = ( sin 2 θ + cos 2 θ ) ( ( sin 2 θ + cos 2 θ ) 2 − 3 ( sin 2 θ ) ( cos 2 θ ) ) Since sin 2 θ + cos 2 θ = 1 , sin 6 θ + cos 6 θ = 1 − 3 ( sin 2 θ ) ( cos 2 θ ) Therefore, S = ( sin 6 1 ∘ + cos 6 1 ∘ ) + ( sin 6 2 ∘ + cos 6 2 ∘ ) + ( sin 6 3 ∘ + cos 6 3 ∘ ) + ⋯ + ( sin 6 4 4 ∘ + cos 6 4 4 ∘ ) + sin 6 4 5 ∘ = ( 1 − 3 ( sin 2 1 ) ( cos 2 1 ) ) + ( 1 − 3 ( sin 2 2 ) ( cos 2 2 ) ) + ( 1 − 3 ( sin 2 3 ) ( cos 2 3 ) ) + ⋯ + ( 1 − 3 ( sin 2 4 4 ) ( cos 2 4 4 ) ) + 8 1 = 4 4 − ( 3 ( sin 2 1 ) ( cos 2 1 ) + 3 ( sin 2 2 ) ( cos 2 2 ) + 3 ( sin 2 3 ) ( cos 2 3 ) + ⋯ + 3 ( sin 2 4 4 ) ( cos 2 4 4 ) ) + 8 1
Also, sin ( 2 θ ) = 2 sin θ cos θ ⟹ sin 2 ( 2 θ ) = 4 sin 2 θ cos 2 θ , which gives us
S = 8 3 5 3 − 4 3 ( sin 2 2 + sin 2 4 + sin 2 6 + ⋯ + sin 2 8 8 ) = 8 3 5 3 − 4 3 ( sin 2 2 + sin 2 4 + ⋯ + sin 2 4 4 + cos 2 4 4 + cos 2 4 2 + ⋯ + cos 2 4 + cos 2 2 ) = 8 3 5 3 − 4 3 ( ( sin 2 2 + cos 2 2 ) + ( sin 2 4 + cos 2 4 ) + ⋯ + ( sin 2 4 4 + cos 2 4 4 ) )
Again using the identity sin 2 θ + cos 2 θ = 1 we get,
S = 8 3 5 3 − 4 3 ( 2 2 ) = 8 3 5 3 − 8 1 3 2 = 8 2 2 1
Therefore, m = 2 2 1 , n = 8 and m + n = 2 2 9