Sixth power trig series!

Geometry Level 5

sin 6 1 + sin 6 2 + sin 6 3 + + sin 6 8 9 = m n \large \sin^61^\circ+\sin^62^\circ+\sin^63^\circ+\cdots+\sin^689^\circ= \frac{m}{n}

The equation above holds true for coprime positive numbers m m and n n . Submit m + n m+n .


The answer is 229.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
May 25, 2017

S = sin 6 1 + sin 6 2 + sin 6 3 + + sin 6 8 9 S=\sin^61^\circ+\sin^62^\circ+\sin^63^\circ+\cdots+\sin^689^\circ

Using the fact that sin 6 θ = cos 6 ( 90 θ ) \sin^6\theta=\cos^6(90-\theta) , S = sin 6 1 + sin 6 2 + sin 6 3 + + sin 6 4 5 + cos 6 4 4 + cos 6 4 3 + cos 6 4 2 + + cos 6 1 = ( sin 6 1 + cos 6 1 ) + ( sin 6 2 + cos 6 2 ) + ( sin 6 3 + cos 6 3 ) + + ( sin 6 4 4 + cos 6 4 4 ) + sin 6 4 5 \begin{aligned}S &=\sin^61^\circ+\sin^62^\circ+\sin^63^\circ+\cdots+\sin^645^\circ+\cos^644^\circ+\cos^643^\circ+\cos^642^\circ+\cdots+\cos^61^\circ \\ \\ &=(\sin^61^\circ+\cos^61^\circ)+(\sin^62^\circ+\cos^62^\circ)+(\sin^63^\circ+\cos^63^\circ)+\cdots+(\sin^644^\circ+\cos^644^\circ)+\sin^645^\circ\end{aligned}

Using the factorization a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) = ( a + b ) ( ( a + b ) 2 3 a b ) a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)((a+b)^2-3ab) and substituting a = sin 2 θ , b = cos 2 θ a=\sin^2\theta, b=\cos^2\theta we get, sin 6 θ + cos 6 θ = ( sin 2 θ + cos 2 θ ) ( ( sin 2 θ + cos 2 θ ) 2 3 ( sin 2 θ ) ( cos 2 θ ) ) \sin^6\theta+\cos^6\theta=(\sin^2\theta+\cos^2\theta)\left((\sin^2\theta+\cos^2\theta)^2-3(\sin^2\theta)(\cos^2\theta)\right) Since sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 , sin 6 θ + cos 6 θ = 1 3 ( sin 2 θ ) ( cos 2 θ ) \sin^6\theta+\cos^6\theta=1-3(\sin^2\theta)(\cos^2\theta) Therefore, S = ( sin 6 1 + cos 6 1 ) + ( sin 6 2 + cos 6 2 ) + ( sin 6 3 + cos 6 3 ) + + ( sin 6 4 4 + cos 6 4 4 ) + sin 6 4 5 = ( 1 3 ( sin 2 1 ) ( cos 2 1 ) ) + ( 1 3 ( sin 2 2 ) ( cos 2 2 ) ) + ( 1 3 ( sin 2 3 ) ( cos 2 3 ) ) + + ( 1 3 ( sin 2 44 ) ( cos 2 44 ) ) + 1 8 = 44 ( 3 ( sin 2 1 ) ( cos 2 1 ) + 3 ( sin 2 2 ) ( cos 2 2 ) + 3 ( sin 2 3 ) ( cos 2 3 ) + + 3 ( sin 2 44 ) ( cos 2 44 ) ) + 1 8 \begin{aligned}S &=(\sin^61^\circ+\cos^61^\circ)+(\sin^62^\circ+\cos^62^\circ)+(\sin^63^\circ+\cos^63^\circ)+\cdots +(\sin^644^\circ+\cos^644^\circ)+\sin^645^\circ \\ \\ &=(1-3(\sin^21)(\cos^21))+(1-3(\sin^22)(\cos^22))+(1-3(\sin^23)(\cos^23))+\cdots +(1-3(\sin^244)(\cos^244))+\frac{1}{8} \\ \\ &= 44-\left(3(\sin^21)(\cos^21)+3(\sin^22)(\cos^22)+3(\sin^23)(\cos^23)+\cdots +3(\sin^244)(\cos^244)\right )+\frac{1}{8} \end{aligned}

Also, sin ( 2 θ ) = 2 sin θ cos θ \sin(2\theta)=2\sin\theta \cos\theta sin 2 ( 2 θ ) = 4 sin 2 θ cos 2 θ \implies \sin^2(2\theta) =4\sin^2\theta \cos^2\theta , which gives us

S = 353 8 3 4 ( sin 2 2 + sin 2 4 + sin 2 6 + + sin 2 88 ) = 353 8 3 4 ( sin 2 2 + sin 2 4 + + sin 2 44 + cos 2 44 + cos 2 42 + + cos 2 4 + cos 2 2 ) = 353 8 3 4 ( ( sin 2 2 + cos 2 2 ) + ( sin 2 4 + cos 2 4 ) + + ( sin 2 44 + cos 2 44 ) ) \begin{aligned} S &=\frac{353}{8}-\frac{3}{4}(\sin^22+\sin^24+\sin^26+\cdots+\sin^288)\\ \\ &=\frac{353}{8}-\frac{3}{4}(\sin^22+\sin^24+\cdots+\sin^244+\cos^244+\cos^242+\cdots+\cos^24+\cos^22) \\ \\ &=\frac{353}{8}-\frac{3}{4}((\sin^22+\cos^22)+(\sin^24+\cos^24)+\cdots+(\sin^244+\cos^244)) \end{aligned}

Again using the identity sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1 we get,

S = 353 8 3 4 ( 22 ) = 353 8 132 8 = 221 8 S=\frac{353}{8}-\frac{3}{4}(22)=\frac{353}{8}-\frac{132}{8}=\frac{221}{8}

Therefore, m = 221 , n = 8 m=221, n=8 and m + n = 229 m+n=\boxed{229}

Chew-Seong Cheong
May 25, 2017

S = sin 6 1 + sin 6 2 + sin 6 3 + + sin 6 8 9 = k = 1 89 sin 6 k = k = 1 44 sin 6 k + sin 6 4 5 + k = 46 89 sin 6 k = k = 1 44 sin 6 k + 1 8 + k = 46 89 cos 6 ( 90 k ) = k = 1 44 sin 6 k + 1 8 + k = 1 44 cos 6 k = k = 1 44 sin 6 k + 1 8 + k = 1 44 ( 1 sin 2 k ) 3 = k = 1 44 sin 6 k + 1 8 + k = 1 44 ( 1 3 sin 2 k + 3 sin 4 k sin 6 k ) = 1 8 + k = 1 44 1 3 k = 1 44 sin 2 k ( 1 sin 2 k ) = 1 8 + 44 3 k = 1 44 sin 2 k cos 2 k = 353 8 3 4 k = 1 44 sin 2 2 k = 353 8 3 4 ( k = 1 22 sin 2 2 k + k = 23 44 cos 2 ( 90 2 k ) ) = 353 8 3 4 ( k = 1 22 sin 2 2 k + k = 1 22 cos 2 2 k ) = 353 8 3 4 k = 1 22 1 = 353 8 66 4 = 221 8 \begin{aligned} S & = \sin^6 1^\circ + \sin^6 2^\circ + \sin^6 3^\circ + \cdots + \sin^6 89^\circ \\ & = \sum_{k=1}^{89} \sin^6 k^\circ \\ & = \sum_{k=1}^{44} \sin^6 k^\circ + \sin^6 45^\circ + \sum_{k=46}^{89} \sin^6 k^\circ \\ & = \sum_{k=1}^{44} \sin^6 k^\circ + \frac 18 + \sum_{k=46}^{89} \cos^6 (90-k)^\circ \\ & = \sum_{k=1}^{44} \sin^6 k^\circ + \frac 18 + \sum_{k=1}^{44} \cos^6 k^\circ \\ & = \sum_{k=1}^{44} \sin^6 k^\circ + \frac 18 + \sum_{k=1}^{44} \left(1-\sin^2 k^\circ\right)^3 \\ & = \sum_{k=1}^{44} \sin^6 k^\circ + \frac 18 + \sum_{k=1}^{44} \left(1-3\sin^2 k^\circ + 3\sin^4 k^\circ - \sin^6 k^\circ \right) \\ & = \frac 18 + \sum_{k=1}^{44} 1 - 3 \sum_{k=1}^{44} \sin^2 k^\circ \left(1 - \sin^2 k^\circ \right) \\ & = \frac 18 + 44 - 3 \sum_{k=1}^{44} \sin^2 k^\circ \cos^2 k^\circ \\ & = \frac {353}8 - \frac 34 \sum_{k=1}^{44} \sin^2 2k^\circ \\ & = \frac {353}8 - \frac 34 \left( \sum_{k=1}^{22} \sin^2 2k^\circ + \sum_{k=23}^{44} \cos^2 (90-2k)^\circ \right) \\ & = \frac {353}8 - \frac 34 \left( \sum_{k=1}^{22} \sin^2 2k^\circ + \sum_{k=1}^{22} \cos^2 2k^\circ \right) \\ & = \frac {353}8 - \frac 34 \sum_{k=1}^{22} 1 \\ & = \frac {353}8 - \frac {66}4 \\ & = \frac {221}8 \end{aligned}

m + n = 221 + 8 = 229 \implies m+n = 221+8 = \boxed{229}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...