Sizing up factors

Is it possible to write 3 2016 + 4 2017 3^{2016}+4^{2017} as the product of two integers, both of which are over 201 8 183 2018^{183} ?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sharky Kesa
Feb 19, 2018

Note that a 4 + 4 b 4 = ( a 2 + 2 b 2 2 a b ) ( a 2 + 2 b 2 + 2 a b ) a^4+4b^4=(a^2+2b^2-2ab)(a^2+2b^2+2ab) by the Sophie-Germain Identity. Further note that a 2 + 2 b 2 2 a b = ( a b ) 2 + b 2 > b 2 a^2+2b^2-2ab = (a-b)^2+b^2>b^2 and a 2 + 2 b 2 + 2 a b = ( a + b ) 2 + b 2 > b 2 a^2+2b^2+2ab=(a+b)^2+b^2 > b^2 . Thus, 3 2016 + 4 2017 = 3 2016 + 4 4 2016 = ( 3 1008 + 2 4 1008 + 2 3 504 4 504 ) ( 3 1008 + 2 4 1008 2 3 504 4 504 ) 3^{2016}+4^{2017}=3^{2016}+4 \cdot 4^{2016}=(3^{1008}+2 \cdot 4^{1008}+2 \cdot 3^{504} \cdot 4^{504})(3^{1008}+2 \cdot 4^{1008}-2 \cdot 3^{504} \cdot 4^{504}) .

It can be seen that 3 1008 + 2 4 1008 ± 2 3 504 4 504 > 4 1008 = 2 2016 > ( 2 11 ) 183 = 204 8 183 > 201 8 183 3^{1008}+2 \cdot 4^{1008} \pm 2 \cdot 3^{504} \cdot 4^{504} > 4^{1008} = 2^{2016} > (2^{11})^{183} = 2048^{183} > 2018^{183} , so both numbers satisfy the bound. Thus, proven.

@Sharky Kesa Same way.....but shouldn't the last word in your solution be proved.......?

Aaghaz Mahajan - 3 years, 3 months ago

Log in to reply

I don't think so. The entire proof was in present tense, so the final statement should be in present tense.

Sharky Kesa - 3 years, 3 months ago
Pi Han Goh
Feb 20, 2018

Essentially, we want to prove that 3 2016 + 4 2017 > ( 201 8 183 ) 2 = 201 8 366 3^{2016} + 4^{2017} > (2018^{183})^2 = 2018^{366} .

I will prove this by reverse engineering this inequality. We start with: 4034 > 4026 2 4034 > 2 4026 = ( 2 11 ) 366 4 2017 > 204 8 366 > 201 8 366 4 2017 + 3 2016 > 201 8 366 \begin{aligned} 4034 &>& 4026 \\ 2^{4034} &>& 2^{4026} = (2^{11})^{366} \\ 4^{2017} &>& 2048^{366} > 2018^{366} \\ 4^{2017} + 3^{2016} &>& 2018^{366} \end{aligned}

This doesn't prove that there exist factors both of which are over 201 8 183 2018^{183} .

Sharky Kesa - 3 years, 3 months ago

Log in to reply

You said product of "2 numbers", not product of "2 integers".

Pi Han Goh - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...