Log Trig Integral 6

Calculus Level 3

0 π 2 log ( tan ( x ) + cot ( x ) ) d x = π log ( a ) \large \int_0^{\frac{\pi }{2}} \log (\tan (x)+\cot (x)) \, dx=\pi \log (a)

where a a is a positive integer. Submit a a .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 21, 2017

I = 0 π 2 log ( tan x + cot x ) d x = 0 π 2 log ( 1 sin x cos x ) d x = 0 π 2 log ( 2 sin 2 x ) d x = 0 π 2 log 2 d x 0 π 2 log ( sin 2 x ) d x See note: 0 π 2 log ( sin 2 x ) d x = 0 π 2 log 2 d x = 2 0 π 2 log 2 d x = π log 2 \begin{aligned} I & = \int_0^\frac \pi 2 \log(\tan x + \cot x) dx \\ & = \int_0^\frac \pi 2 \log \left(\frac 1{\sin x \cos x}\right) dx \\ & = \int_0^\frac \pi 2 \log \left(\frac 2{\sin 2x}\right) dx \\ & = \int_0^\frac \pi 2 \log 2 \ dx - \color{#3D99F6} \int_0^\frac \pi 2 \log (\sin 2x ) dx & \small \color{#3D99F6} \text{See note: } \int_0^\frac \pi 2 \log (\sin 2x ) dx = - \int_0^\frac \pi 2 \log 2 dx \\ & = 2 \int_0^\frac \pi 2 \log 2 \ dx = \pi \log 2 \end{aligned}

a = 2 \implies a = \boxed{2}


Note:

I 1 = 0 π 2 log ( sin 2 x ) d x Let u = 2 x d u = 2 d x = 1 2 0 π log ( sin u ) d u Since sin u is symmetrical about π 2 = 0 π 2 log ( sin u ) d u Replacing u with x = 0 π 2 log ( sin x ) d x \begin{aligned} I_1 & = \int_0^\frac \pi 2 \log (\sin 2x ) dx & \small \color{#3D99F6} \text{Let } u = 2x \implies du = 2\ dx \\ & = \frac 12 \int_0^\pi \log (\sin u ) du & \small \color{#3D99F6} \text{Since } \sin u \text{ is symmetrical about }\frac \pi 2 \\ & = \int_0^\frac \pi 2 \log (\sin u ) du & \small \color{#3D99F6} \text{Replacing }u\text{ with }x \\ & = \int_0^\frac \pi 2 \log (\sin x ) dx \end{aligned}

Also that:

I 1 = 0 π 2 log ( sin 2 x ) d x = 0 π 2 log ( 2 sin x cos x ) d x = 0 π 2 log 2 d x + 0 π 2 log ( sin x ) d x + 0 π 2 log ( cos x ) d x By a b f ( x ) d x = a b f ( a + b x ) d x = 0 π 2 log 2 d x + 0 π 2 log ( sin x ) d x + 0 π 2 log ( sin x ) d x = 0 π 2 log 2 d x + 2 I 1 I 1 = 0 π 2 log 2 d x \begin{aligned} I_1 & = \int_0^\frac \pi 2 \log (\sin 2x ) dx \\ & = \int_0^\frac \pi 2 \log (2\sin x \cos x) dx \\ & = \int_0^\frac \pi 2 \log 2 \ dx + \int_0^\frac \pi 2 \log (\sin x ) dx + \color{#3D99F6} \int_0^\frac \pi 2 \log (\cos x ) dx & \small \color{#3D99F6} \text{By } \int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \int_0^\frac \pi 2 \log 2 \ dx + \int_0^\frac \pi 2 \log (\sin x ) dx + \color{#3D99F6} \int_0^\frac \pi 2 \log (\sin x ) dx \\ & = \int_0^\frac \pi 2 \log 2 \ dx + 2I_1 \\ \implies I_1 & = - \int_0^\frac \pi 2 \log 2 \ dx \end{aligned}

I think there is a typing mistake in 6-th line of Note ; it should be log(2) instead of log(2x)

Mrigank Shekhar Pathak - 3 years, 5 months ago

Log in to reply

Thanks. Didn't know what happened to me.

Chew-Seong Cheong - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...