Sketch the integrand!

Calculus Level 2

2 π π π / 2 3 π / 2 ( ( ( x π ) 2 ) 1 / 4 sin ( x ) + π 2 ) d x \frac{\sqrt{2}}{\pi\sqrt{\pi}}\int_{\pi/2}^{3\pi/2}\left(((x-\pi)^2)^{1/4}\sin(x)+\sqrt{\frac{\pi}{2}}\right) \, dx

Without using a calculator, evaluate the integral above.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mikael Marcondes
Jul 17, 2015

First, one can use the theorem of change in variable for u = x π d u = d x u=x-\pi \rightarrow du=dx , and interval of integration becomes [ π 2 π , 3 π 2 π ] [ π 2 , π 2 ] [\frac{\pi}{2}-\pi, \frac{3\pi}{2}-\pi] \rightarrow [\frac{-\pi}{2}, \frac{\pi}{2}] . Then:

I = 1 π . 2 π . π / 2 π / 2 ( u 2 ) 1 4 . s i n ( u + π ) + π 2 d u \displaystyle I=\frac{1}{\pi}.\sqrt{\frac{2}{\pi}}.\int_{-\pi/2}^{\pi/2}(u^2)^{\frac{1}{4}}.sin(u+\pi)+\sqrt{\frac{\pi}{2}} \ du

But s i n ( u + π ) = s i n ( u ) sin(u+\pi)=-sin(u) and ( u 2 ) 1 4 . s i n ( u ) -(u^2)^{\frac{1}{4}}.sin(u) is an odd function integrated over a symmetrical interval (i. e. null total area). Splitting integrals:

I = 1 π . 2 π . π / 2 π / 2 ( u 2 ) 1 4 . s i n ( u ) d u + 1 π . 2 π . π / 2 π / 2 π 2 d u \displaystyle I=\frac{1}{\pi}.\sqrt{\frac{2}{\pi}}.\int_{-\pi/2}^{\pi/2}-(u^2)^{\frac{1}{4}}.sin(u) \ du+\frac{1}{\pi}.\sqrt{\frac{2}{\pi}}.\int_{-\pi/2}^{\pi/2}\sqrt{\frac{\pi}{2}} \ du

I = 1 π . 2 π . π / 2 π / 2 π 2 d u = 1 π . π / 2 π / 2 1 d u = 1 \displaystyle I=\frac{1}{\pi}.\sqrt{\frac{2}{\pi}}.\int_{-\pi/2}^{\pi/2}\sqrt{\frac{\pi}{2}} \ du=\frac{1}{\pi}.\int_{-\pi/2}^{\pi/2} 1 \ du=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...