Sky is the limit! (2)

Calculus Level 5

f ( m ) = n = 0 m k = 1 m 1 ( 1 + n k ) \large f(m) = \sum_{n=0}^{m}\prod_{k=1}^{m-1} \left(1+\frac{n}{k} \right)

For f ( m ) f(m) as defined above, find lim m f ( m ) m \displaystyle \lim_{m \to \infty} \sqrt [m]{f(m)} .


If you are looking for more such twisted questions, Twisted problems for JEE aspirants is for you!


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sparsh Sarode
Feb 23, 2017

f ( m ) = n = 0 m k = 1 m 1 ( 1 + n k ) \displaystyle f(m)=\sum_{n=0}^{m} \prod_{k=1}^{m-1} \left(1+\dfrac{n}{k} \right)

= n = 0 m ( ( 1 + n 1 ) ( 1 + n 2 ) . . . ( 1 + n m 1 ) ) \displaystyle = \sum_{n=0}^{m} \left( \left( 1+\dfrac{n}{1} \right) \left(1+\dfrac{n}{2} \right)... \left(1+\dfrac{n}{m-1} \right) \right)

= 1 + ( 1 + 1 1 ) ( 1 + 1 2 ) . . . ( 1 + 1 m 1 ) + ( 1 + 2 1 ) ( 1 + 2 2 ) . . . ( 1 + 2 m 1 ) + . . . + ( 1 + m 1 ) ( 1 + m 2 ) . . . ( 1 + m m 1 ) = 1+ \left( 1+\dfrac{1}{1} \right) \left(1+\dfrac{1}{2} \right)... \left(1+\dfrac{1}{m-1} \right)+ \left( 1+\dfrac{2}{1} \right) \left(1+\dfrac{2}{2} \right)... \left(1+\dfrac{2}{m-1} \right)+...+ \left( 1+\dfrac{m}{1} \right) \left(1+\dfrac{m}{2} \right)... \left(1+\dfrac{m}{m-1} \right)

= 1 + 2 × 3 × . . . . × m ( m 1 ) ! + 3 × 4 × . . . × ( m + 1 ) ( m 1 ) + . . . + ( m + 1 ) ( m + 2 ) . . . ( m + ( m 1 ) ) ( m 1 ) =1+\dfrac{2 \times 3 \times.... \times m}{(m-1)!}+\dfrac{3 \times 4 \times... \times (m+1)}{(m-1)}+...+\dfrac{(m+1)(m+2)...(m+(m-1))}{(m-1)}

= 1 + m ! 1 ! ( m 1 ) ! + ( m + 1 ) ! 2 ! ( m 1 ) ! + . . . + ( m + ( m 1 ) ) ! m ! ( m 1 ) ! =1+\dfrac{m!}{1!(m-1)!}+\dfrac{(m+1)!}{2!(m-1)!}+...+\dfrac{(m+(m-1))!}{m!(m-1)!}

= ( m m ) + ( m m 1 ) + ( m + 1 m 1 ) + . . . + ( m + ( m 1 ) m 1 ) \displaystyle ={m \choose m} + {m \choose m-1}+{m+1 \choose m-1}+...+{m+(m-1) \choose m-1}

= ( m + 1 m ) + ( m + 1 m 1 ) + . . . + ( m + ( m 1 ) m 1 ) \displaystyle =\ \ \ \ \ \ {m+1 \choose m} \ \ \ + \ \ \ {m+1 \choose m-1} +...+{m+(m-1) \choose m-1}

= ( m + ( m 1 ) m ) + ( m + ( m 1 ) m 1 ) \displaystyle = {m+(m-1) \choose m} + {m+(m-1) \choose m-1}

= ( 2 m m ) \displaystyle = {2m \choose m}

f ( m ) = ( 2 m m ) \displaystyle f(m) = {2m \choose m}


lim m ( f ( m ) ) 1 m = lim m ( 2 m m ) 1 m = 4 \displaystyle \lim_{m \rightarrow \infty} (f(m))^{\frac{1}{m}}=\lim_{m \rightarrow \infty} {2m \choose m} ^{\frac{1}{m}} = 4

I will leave it to you to prove the above part or you can check here

Nice solution.

Hana Wehbi - 4 years, 3 months ago

Did the same

saptarshi dasgupta - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...