Slant Hexagonal Pyramid 2.

Geometry Level 4

In the oblique hexagonal pyramid above the base is a regular hexagon with side length r r and the height is h = G A h = GA .

Find the value of r r and h h that minimizes the congruent faces G F E GFE and G B C GBC when the volume is held constant.

Compute the measure of the angle(in degrees) between the two triangular faces D G E DGE and E G F EGF .


The answer is 135.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 17, 2018

Let r r be the length of a side of the hexagon and h = G A h = GA be the height of the hexagonal pyramid.

C : ( r 2 , 3 2 , 0 ) , B : ( r 2 , 3 2 , 0 ) C:(\dfrac{r}{2},\dfrac{\sqrt{3}}{2},0), \:\ B:(-\dfrac{r}{2},\dfrac{\sqrt{3}}{2},0) and G ( r , 0 , h ) G(r,0,h) .

u = r i + 0 j + 0 k \vec{u} = -r\vec{i} + 0\vec{j} + 0\vec{k} and v = r 2 i 3 2 j + h k u X v = 0 i + r h j + 3 2 r 2 k \vec{v} = \dfrac{r}{2}\vec{i} - \dfrac{\sqrt{3}}{2}\vec{j} + h\vec{k} \implies \vec{u} X \vec{v} = 0\vec{i} + rh\vec{j} + \dfrac{\sqrt{3}}{2}r^2\vec{k} \implies

d = 4 h 2 + 3 r 2 2 A G C B = A G E F = 1 4 4 h 2 + 3 r 2 r d = \dfrac{\sqrt{4h^2 + 3r^2}}{2} \implies A_{\triangle{GCB}} = A_{\triangle{GEF}} = \dfrac{1}{4}\sqrt{4h^2 + 3r^2}r

Let A = 1 4 4 h 2 + 3 r 2 r A = \dfrac{1}{4}\sqrt{4h^2 + 3r^2}r

The volume V = 1 4 3 r 2 h = k h = 4 3 r 2 V = \dfrac{1}{4\sqrt{3}}r^2h = k \implies h = \dfrac{4\sqrt{3}}{r^2} \implies A ( r ) = 1 4 192 k 2 + 3 r 6 r A(r) = \dfrac{1}{4}\dfrac{\sqrt{192k^2 + 3r^6}}{r} \implies d A d r = 3 ( r 6 32 k 2 ) 2 r 2 192 k 2 + 3 r 6 = 0 r = ( 4 2 k ) 1 3 h = 4 3 k ( 1 4 2 k ) 2 3 \dfrac{dA}{dr} = \dfrac{3(r^6 - 32k^2)}{2r^2\sqrt{192k^2 +3r^6}} = 0 \implies r = (4\sqrt{2}k)^{\frac{1}{3}} \implies h = 4\sqrt{3}k(\dfrac{1}{4\sqrt{2}k})^{\frac{2}{3}}

E D = r 2 i + 3 2 r j + 0 k \vec{ED} = -\dfrac{r}{2}\vec{i} + \dfrac{\sqrt{3}}{2}r\vec{j} + 0\vec{k}

E F = r i + 0 j + 0 k \vec{EF} = r\vec{i} + 0\vec{j} + 0\vec{k}

E G = 3 2 r i + 3 2 j + h k \vec{EG} = \dfrac{3}{2}r\vec{i} + \dfrac{\sqrt{3}}{2}\vec{j} + h\vec{k}

p = E G X E D = 3 2 r h i 1 2 r h j + 3 r 2 k \implies \vec{p} = \vec{EG} \:\ X \:\ \vec{ED} = -\dfrac{\sqrt{3}}{2}rh\vec{i} - \dfrac{1}{2}rh\vec{j} + \sqrt{3}r^2\vec{k}

and

q = E G X E F = 0 i + r h j 3 2 r 2 k \vec{q} = \vec{EG} \:\ X \:\ \vec{EF} = 0\vec{i} + rh\vec{j} - \dfrac{\sqrt{3}}{2}r^2\vec{k}

p q = 1 2 r 2 ( h 2 + 3 r 2 ) < 0 \vec{p} \cdot \vec{q} = -\dfrac{1}{2}r^2(h^2 + 3r^2) < 0 \implies

cos ( θ ) = p q p q = h 2 + 3 r 2 4 h 2 + 3 r 2 = 1 2 θ = 13 5 \cos(\theta) = -\dfrac{|\vec{p} \cdot \vec{q}|}{|\vec{p}| |\vec{q}|} = -\dfrac{\sqrt{h^2 + 3r^2}}{\sqrt{4h^2 + 3r^2}} = -\dfrac{1}{\sqrt{2}} \implies \theta = \boxed{135^\circ} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...