Slicing Up A Pi

Calculus Level 3

We know that

1 a n 1 a = 1 + a + a 2 + a 3 + . . . + a n \frac{1-a^n}{1-a}=1+a+a^2+a^3+...+a^n

whenever a < 1 |a|<1 . It is not hard to find that in these circumstances,

lim n 1 a n 1 a = 1 1 a = 1 + a + a 2 + a 3 + . . . + a n . . . \lim_{n\to\infty}\frac{1-a^n}{1-a}=\frac{1}{1-a}=1+a+a^2+a^3+...+a^n...

Substituting a = ( x 2 ) a=-(x^2) into the expression gives us

1 1 + x 2 = 1 x 2 + x 4 x 6 + . . . + ( 1 ) n x 2 n . . . \frac{1}{1+x^2}=1-x^2+x^4-x^6+...+(-1)^n x^{2n}...

Does the left-hand expression seem familiar? If it does, then evaluate the following:

1 1 + x 2 d x = 1 x 2 + x 4 x 6 + . . . + ( 1 ) n x 2 n . . . d x \int \frac{1}{1+x^2} dx = \int 1-x^2+x^4-x^6+...+(-1)^n x^{2n}... dx

If x = 1 x=1 , what does the right-hand expression approximately equal?


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andrei Li
Jul 27, 2018

The key is to realize that 1 1 + x 2 = d d x arctan ( x ) \frac{1}{1+x^2}=\frac{d}{dx}\arctan(x) . Therefore,

1 1 + x 2 d x = 1 x 2 + x 4 x 6 + . . . + ( 1 ) n x 2 n . . . d x \int \frac{1}{1+x^2} dx = \int 1-x^2+x^4-x^6+...+(-1)^n x^{2n}... dx

arctan ( x ) = x 1 3 x 3 + 1 5 x 5 1 7 x 7 . . . ( 1 ) n x 2 n + 1 2 n + 1 . . . = n = 0 ( 1 ) n x 2 n + 1 2 n + 1 \arctan(x)=x-\frac{1}{3}x^3+\frac{1}{5}x^5-\frac{1}{7}x^7...(-1)^n\frac{x^{2n+1}}{2n+1}...=\sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{2n+1}

Recall that arctan ( 1 ) = π 4 \arctan(1)=\frac{\pi}{4} . Then,

π 4 = 1 1 3 + 1 5 1 7 . . . ( 1 ) n 1 2 n + 1 . . . = n = 0 ( 1 ) n 1 2 n + 1 \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}...(-1)^n\frac{1}{2n+1}...=\sum_{n=0}^\infty(-1)^n\frac{1}{2n+1}

which is approximately equal to 0.785. QED!

There is typo in the first line. 1 1 + x 2 \dfrac{1}{1+x^2} .

Naren Bhandari - 2 years, 10 months ago

Log in to reply

Thanks! I've fixed the problem.

Andrei Li - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...