Sliding Planes

Calculus Level pending

Two planes have the following equations (assuming p = ( x , y , z ) p = (x, y, z) ):

n 1 ( p p 1 ( t ) ) = 0 n_1 \cdot (p - p_1(t) ) = 0

with n 1 = ( 1 , 1 , 5 ) , p 1 ( t ) = ( 3 , 4 , 3 ) + ( 0 , 0 , 1 ) t n_1 = (1, -1, 5) , p_1(t) = (3, 4, 3) + (0, 0, 1) t , and

n 2 ( p p 2 ( t ) ) = 0 n_2 \cdot (p - p_2(t) ) = 0

with n 2 = ( 2 , 1 , 3 ) , p 2 ( t ) = ( 1 , 2 , 5 ) + ( 1 , 0 , 0 ) t n_2 = (2, -1, 3), p_2(t) = (-1, 2, 5) + (1, 0, 0) t

t t is the time parameter. The intersection of these two planes traces a plane. If the normal of the traced plane is along the vector ( a , b , c ) (a, -b, c) where a , b , c a, b, c are positive integers with g c d ( a , b , c ) = 1 gcd(a,b,c) = 1 , find a + b + c a + b + c .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Aug 10, 2016

At any given t t the intersection is a straight line along n 1 × n 2 n_1 \times n_2 , and given by:

p = s ( n 1 × n 2 ) + x 1 n 1 + y 1 n 2 p = s (n_1 \times n_2) + x_1 n_1 + y_1 n_2

where s s is arbitrary, and x 1 x_1 and y 1 y_1 are a linear function of t t . To see this substitute the above into the two equations

n 1 T ( p p 1 ( t ) ) = 0 n_1^T (p - p_1(t) ) = 0

n 2 T ( p p 2 ( t ) ) = 0 n_2^T (p - p_2(t) ) = 0

where p 1 ( t ) = r 1 + w 1 t p_1(t) = r_1 + w_1 t and p 2 ( t ) = r 2 + w 2 t p_2(t) = r_2 + w_2 t .

We can assume WLOG that n 1 n_1 and n 2 n_2 have been normalized. It follows that

x 1 + y 1 ( n 1 n 2 ) = n 1 p 1 ( t ) x_1 + y_1 (n_1 \cdot n_2) = n_1 \cdot p_1(t)

x 1 ( n 1 n 2 ) + y 1 = n 2 p 2 ( t ) x_1(n_1 \cdot n_2) + y_1 = n_2 \cdot p_2(t)

(note that n 1 . n 2 < 1 | n_1.n_2 | \lt 1 ) This system can be solved for x 1 x_1 and y 1 y_1 for any given t t . Taking the derivative with respect to t t , we obtain

d x 1 d t + d y 1 d t ( n 1 n 2 ) = n 1 w 1 \dfrac{dx_1}{dt} + \dfrac{dy_1}{dt} (n_1 \cdot n_2) = n_1 \cdot w_1

( n 1 . n 2 ) d x 1 d t + d d y 1 d t = n 2 w 2 (n_1.n_2) \dfrac{dx_1}{dt} + d\frac{dy_1}{dt} = n_2 \cdot w_2

where w 1 w_1 and w 2 w_2 are defined above.

Solving for the two derivatives we get,

d x 1 d t = ( n 1 w 1 ( n 1 n 2 ) ( n 2 w 2 ) / ( 1 ( n 1 n 2 ) 2 ) \dfrac{dx_1}{dt} = ( n_1 \cdot w_1 - (n_1 \cdot n_2) (n_2 \cdot w_2)/ ( 1 - (n_1 \cdot n_2)^2 )

d y 1 d t = ( ( n 1 n 2 ) ( n 1 w 1 ) + n 2 w 2 ) / ( 1 ( n 1 n 2 ) 2 ) \dfrac{dy_1}{dt} = (-(n_1 \cdot n_2)(n_1 \cdot w_1) + n_2 \cdot w_2 )/( 1 - (n_1 \cdot n_2)^2 )

Thus ( x 1 , y 1 ) (x_1, y_1) traces a line in the ( n 1 , n 2 ) (n_1, n_2) plane. The direction vector of this line is

d = ( d x 1 d t ) n 1 + ( d y 1 d t ) n 2 d = ( \dfrac{dx_1}{dt}) n_1 + (\dfrac{dy_1}{dt}) n_2

Therefore, the normal to the traced plane is obtained by the cross product of ( n 1 × n 2 ) ( n_1 \times n_2 ) and the vector d d :

( n 1 × n 2 ) × d = ( n 1 × n 2 ) × ( d x 1 d t n 1 + d y 1 d t n 2 ) (n_1 \times n_2) \times d = (n_1 \times n_2) \times ( \dfrac{dx_1}{dt} n_1 + \dfrac{dy_1}{dt} n_2 )

= ( d x 1 d t ) [ ( n 1 n 2 ) n 1 n 2 ] ( d y 1 d t ) [ n 1 ( n 1 n 2 ) n 2 ] = -(\dfrac{dx_1}{dt}) \left[ (n_1 \cdot n_2) n_1 - n_2 \right] - (\dfrac{dy_1}{dt}) \left[ n_1 - (n_1 \cdot n_2) n_2 \right]

= n 1 [ ( n 1 n 2 ) d x 1 d t + d y 1 d t ] + n 2 [ d x 1 d t + ( n 1 n 2 ) d y 1 d t ] = - n_1 \left[ (n_1 \cdot n_2) \dfrac{dx_1}{dt} + \dfrac{dy_1}{dt} \right] + n_2 \left[ \dfrac{dx_1}{dt} + (n_1 \cdot n_2) \dfrac{dy_1}{dt} \right]

Substituting the given values , we obtain a normal vector along [ 8 , 3 , 5 ] T [8, -3, 5]^T , making the answer 8 + 3 + 5 = 16 8 + 3 + 5 = \boxed{16}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...