Slopey Slopes!

Calculus Level 3

Let f ( x ) = x x x x . . . f(x)=x^{x^{x^{x^{.^{.{^.}}}}}} . What is f ( 2 ) f'(\sqrt{2}) ?

e 2 e^2 2 2 ln 2 \frac{2}{\sqrt{2}-\ln{2}} 2 2 2 2 1 ln 2 \frac{2\sqrt{2}}{1-\ln{2}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marley McWilliams
Aug 30, 2019

First, what is f ( x ) f'(x) ? Let y = f ( x ) y=f(x) .

y = x x x x . . . = x y = e y ln x y=x^{x^{x^{x^{.^{.{^.}}}}}}=x^y=e^{y\ln{x}}

y = e y ln x ( d d x y ln x ) = x y ( y x + y ln x ) = y ( y x + y ln x ) y'=e^{y\ln{x}}(\frac{d}{dx}y\ln{x})=x^y(\frac{y}{x}+y'\ln{x})=y(\frac{y}{x}+y'\ln{x})

y ( 1 y ln x ) = y 2 x y'(1-y\ln{x})=\frac{y^2}{x}

y = y 2 x x y ln x = ( x x x x . . . ) 2 x x ( x x x x . . . ) ln x y'=\frac{y^2}{x-xy\ln{x}}=\frac{(x^{x^{x^{x^{.^{.{^.}}}}}})^2}{x-x(x^{x^{x^{x^{.^{.{^.}}}}}})\ln{x}}

Next, what is f ( 2 ) f(\sqrt{2}) or 2 2 2 . . . \sqrt{2}^{\sqrt{2}^{\sqrt{2}^{.^{.{^.}}}}} ?

Like before, y = 2 2 2 . . . y=\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{.^{.{^.}}}}} can also be expressed as y = 2 y y=\sqrt{2}^y . This gives candidates: y = 2 , 4 y=2,4

Then, I want to show that f ( x ) e f(x)\leqslant e .

Raise both sides of y = x y y=x^y to 1 y \frac{1}{y} . We have: x = y 1 y x=y^\frac{1}{y} d x d y = y 1 y ( 1 ln ( y ) y 2 ) \frac{dx}{dy}=y^\frac{1}{y}(\frac{1-\ln(y)}{y^2})

y 1 y y^\frac{1}{y} and 1 y 2 \frac{1}{y^2} are both positive for y > 0 y>0 , meaning the critical point is found where 1 ln ( y ) = 0 1-\ln(y)=0 : at y = e y=e and x = e 1 e x=e^\frac{1}{e} .

Consider the sequence: x , x x , x x x , . . . , x x x x . . . , . . . x,x^x,x^{x^x},...,x^{x^{x^{x^{.^{.{^.}}}}}},... over the interval 1 < x e 1 e 1<x\leqslant e^\frac{1}{e} . Each term is greater than the last over this interval and it's upper bound is f ( x ) f(x) . It will therefore converge to f ( x ) f(x) from below. We know y = e y=e is a local maximum of x x , so greater y y 's would require the function to curve backwards, meaning: 1 < x x x x . . . e 1<x^{x^{x^{x^{.^{.{^.}}}}}}\leqslant e over the interval 1 < x e 1 e 1<x\leqslant e^\frac{1}{e} , which includes 2 \sqrt{2} .

Finally, 1 < 2 < e < 4 1<2<e<4 . Since 4 4 is not defined on the range of f ( x ) f(x) : 2 2 2 . . . = 2 \sqrt{2}^{\sqrt{2}^{\sqrt{2}^{.^{.{^.}}}}}=2 Plugging in:

f ( 2 ) = ( 2 ) 2 2 2 ( 2 ) ln 2 = 2 2 1 ln 2 f'(\sqrt{2})=\frac{(2)^2}{\sqrt{2}-\sqrt{2}(2)\ln{\sqrt{2}}}=\frac{2\sqrt{2}}{1-\ln{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...