Sloppy calibration

Calculus Level 4

The temperature curve of a resistance thermometer (PT100) is given a quadratic polynomial: R ( T ) = R 0 ( 1 + a T + b T 2 ) R(T) = R_0 (1 + a \cdot T + b \cdot T^2) with constants R 0 = 100 Ω R_0 = 100 \,\mathrm{\Omega} , a = 4 1 0 3 1 C a = 4 \cdot 10^{-3} \frac{1}{^\circ \text{C}} and b = 6 1 0 7 1 C 2 b = -6 \cdot 10^{-7} \frac{1}{^\circ \text{C}^2} . The temperature T T is expressed in degrees Celsius.

Because he does not know the temperature curve, an engineer measures the resistance at the two temperatures T = 0 C T = 0^\circ \text{C} and T = 40 0 C T = 400^\circ \text{C} . For temperature range between he assumes a linear relationship R ~ ( T ) = R 0 ( 1 + c T ) \tilde R(T) = R_0 (1 + c \cdot T) with R ~ ( 0 C ) = R ( 0 C ) \tilde R(0^\circ \text{C}) = R(0^\circ \text{C}) and R ~ ( 40 0 C ) = R ( 40 0 C ) \tilde R(400^\circ \text{C}) = R(400^\circ \text{C}) . He uses the self-calibrated curve for temperature measurements. What is the maximum error Δ T \Delta T in the temperature measurement in the interval 0 C T 40 0 C 0^\circ \text{C} \leq T \leq 400^\circ \text{C} ? Round the result to the nearest integer.

Hint: The graph is for illustrative purposes only and is not true to scale.

Bonus question: How does the temperature error change, if the upper temperatur point was T 2 = 20 0 C T_2 = 200^\circ \text{C} instead of 40 0 C 400^\circ \text{C} and the measurement range is reduced to 0 C T 20 0 C 0^\circ \text{C} \leq T \leq 200^\circ\text{C} ?

6 °C 1 °C 24 °C 3 °C 12 °C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

R ( 400 ) = R ~ ( 400 ) c = R ~ ( 400 C ) / R 0 1 T = a + b 400 C \begin{aligned} R(400\,^\circ)=\tilde R(400\,^\circ)~\Rightarrow~c=\frac{\tilde R(400\,^\circ C)/R_0-1}{T}=a+b\cdot 400\,^\circ C \end{aligned} \\~\\

T ~ = R ~ / R 0 1 c T = a R 0 ± a 2 R 0 2 4 b R 0 ( R 0 R ) 2 b R 0 = a ± a 2 4 b + 4 b R / R 0 2 b , T ( R 0 ) = ! 0 + \begin{aligned} \tilde T&=\frac{\tilde R/R_0-1}{c}\\ T&=\frac{-aR_0\pm\sqrt{a^2R_0^2-4bR_0(R_0-R)}}{2bR_0}\\ &=\frac{-a\pm\sqrt{a^2-4b+4bR/R_0}}{2b}~~,~T(R_0)\overset !=0~\Rightarrow +\\ \end{aligned} \\

Δ T = T ~ T = R / R 0 1 c + a a 2 4 b + 4 b R / R 0 2 b d Δ T d R = 1 / R 0 c 4 b / R 0 4 b a 2 4 b + 4 b R / R 0 = ! 0 c = a 2 4 b + 4 b R / R 0 4 b R / R 0 = c 2 a 2 + 4 b R / R 0 = ( c 2 a 2 ) / 4 b + 1 Δ T = c a 2 / c 4 b + a c 2 b = c a 2 / c + 2 a 4 b 6.383 C 6 C \begin{aligned} \Delta T&=\tilde T-T=\frac{R/R_0-1}{c}+\frac{a-\sqrt{a^2-4b+4bR/R_0}}{2b}\\ \frac{\mathrm d\Delta T}{\mathrm dR}&=1/R_0c-\frac{4b/R_0}{4b\sqrt{a^2-4b+4bR/R_0}}\overset !=0\\ \Rightarrow c&=\sqrt{a^2-4b+4bR/R_0}\\ \Rightarrow 4bR/R_0&=c^2-a^2+4b\\ \Rightarrow~R/R_0&=(c^2-a^2)/4b+1\\ \Rightarrow~\Delta T&=\frac{c-a^2/c}{4b}+\frac{a-c}{2b}=\frac{-c-a^2/c+2a}{4b}\approx 6.383\,^\circ C\\ &\approx\boxed{6\,^\circ C} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...