A geometry problem by Refaat M. Sayed

Geometry Level 4

sin ( θ 1 ) + sin ( θ 2 ) + sin ( θ 3 ) = cos ( θ 1 ) + cos ( θ 2 ) + cos ( θ 3 ) = 0 sin 2 ( θ 1 ) + sin 2 ( θ 2 ) + sin 2 ( θ 3 ) = ? \sin \left( \theta _{1}\right) + \sin \left( \theta _{2}\right) + \sin \left( \theta _{3}\right) =\cos \left( \theta _{1}\right) + \cos \left( \theta _{2}\right) + \cos \left( \theta _{3}\right) = 0 \\ \sin ^{2}\left( \theta _{1}\right) + \sin ^{2}\left( \theta _{2}\right) + \sin ^{2}\left( \theta _{3}\right) = \ ?


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 12, 2015

The general solution of the equations is as follows (see note ):

{ sin θ 1 + sin θ 2 + sin θ 3 = 0 cos θ 1 + cos θ 2 + cos θ 3 = 0 { θ 1 = θ θ 2 = θ + 2 π 3 θ 3 = θ + 4 π 3 = θ 2 π 3 \begin{cases} \sin{\theta_1} + \sin{\theta_2} + \sin{\theta_3} = 0 \\ \cos{ \theta _1} + \cos{\theta_2} + \cos{\theta_3} = 0 \end{cases} \Rightarrow \begin{cases} \theta_1 = \theta \\ \theta_2 = \theta + \frac{2\pi}{3} \\ \theta_3 = \theta + \frac{4\pi}{3} = \theta - \frac{2\pi}{3} \end{cases}

Proof:

sin θ 1 + sin θ 2 + sin θ 3 = sin θ + sin ( θ + 2 π 3 ) + sin ( θ 2 π 3 ) = sin θ 1 2 sin θ + 3 2 cos θ 1 2 sin θ 3 2 cos θ = 0 \begin{aligned} \sin{\theta_1} + \sin{\theta_2} + \sin{\theta_3} & = \sin{\theta} + \sin{\left(\theta + \frac{2\pi}{3}\right)} + \sin{\left(\theta - \frac{2\pi}{3}\right)} \\ & = \sin{\theta} - \frac{1}{2}\sin{\theta} + \frac{\sqrt{3}}{2}\cos{\theta} - \frac{1}{2}\sin{\theta} - \frac{\sqrt{3}}{2}\cos{\theta} \\ & = 0 \end{aligned}

cos θ 1 + cos θ 2 + cos θ 3 = cos θ + cos ( θ + 2 π 3 ) + cos ( θ 2 π 3 ) = cos θ 1 2 cos θ 3 2 sin θ 1 2 cos θ + 3 2 sin θ = 0 \begin{aligned} \cos{\theta_1} + \cos{\theta_2} + \cos{\theta_3} & = \cos{\theta} + \cos{\left(\theta + \frac{2\pi}{3}\right)} + \cos{\left(\theta - \frac{2\pi}{3}\right)} \\ & = \cos{\theta} - \frac{1}{2}\cos{\theta} - \frac{\sqrt{3}}{2}\sin{\theta} - \frac{1}{2}\cos{\theta} + \frac{\sqrt{3}}{2}\sin{\theta} \\ & = 0 \end{aligned}

Now, we have:

sin 2 θ 1 + sin 2 θ 2 + sin 2 θ 3 = ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 2 ( sin θ 1 sin θ 2 + sin θ 2 sin θ 3 + sin θ 3 sin θ 1 ) = 0 2 [ sin θ sin ( θ + 2 π 3 ) + sin ( θ + 2 π 3 ) sin ( θ 2 π 3 ) + sin ( θ 2 π 3 ) sin θ ] = 2 [ sin θ ( 1 2 sin θ + 3 2 cos θ 1 2 sin θ 3 2 cos θ ) + ( 1 2 sin θ + 3 2 cos θ ) ( 1 2 sin θ 3 2 cos θ ) ] = 2 [ sin 2 θ + 1 4 sin 2 θ 3 4 cos 2 θ ] = 2 [ 3 4 sin 2 θ + 3 4 cos 2 θ ] = 3 2 = 1.5 \sin^2{\theta_1} + \sin^2{\theta_2} + \sin^2{\theta_3} \\ = (\sin{\theta_1} + \sin{\theta_2} + \sin{\theta_3}) ^2 - 2 (\sin{\theta_1} \sin{\theta_2} + \sin{\theta_2} \sin{\theta_3} + \sin{\theta_3} \sin{\theta_1}) \\ = 0 - 2 \left[\sin{\theta} \sin{\left(\theta + \frac{2\pi}{3}\right)} + \sin{\left(\theta + \frac{2\pi}{3}\right)} \sin{\left(\theta - \frac{2\pi}{3}\right)} + \sin{\left(\theta - \frac{2\pi}{3}\right)} \sin{\theta}\right] \\ = -2 \left[\sin{\theta} \left( -\frac{1}{2} \sin{\theta} + \frac{\sqrt{3}}{2} \cos{\theta} -\frac{1}{2} \sin{\theta} - \frac{\sqrt {3}} {2} \cos{\theta} \right) \\ \quad \quad \quad \quad + \left( -\frac{1}{2} \sin{\theta} + \frac{\sqrt{3}}{2} \cos{\theta} \right) \left(-\frac{1}{2} \sin{\theta} - \frac{\sqrt {3}} {2} \cos{\theta} \right) \right] \\ = -2 \left[- \sin^2{\theta} + \frac{1}{4} \sin^2{\theta} - \frac{3}{4} \cos^2{\theta} \right] \\ = 2 \left[\frac{3}{4} \sin^2{\theta} + \frac{3}{4} \cos^2{\theta} \right] \\ = \frac{3}{2} = \boxed{1.5}

Moderator note:

But how do you know that this value must be true for all possible sets of θ i \theta_i that satisfy the conditions?

Good solution sir +1

Refaat M. Sayed - 5 years, 10 months ago

In the note (Argand Diagram and Sum of Cosines of Multiple Angle = 1/2), I showed that for sin θ 1 + sin θ 2 + sin θ 3 = cos θ 1 + cos θ 2 + cos θ 3 = 0 \sin{\theta_1} + \sin{\theta_2} + \sin{\theta_3} = \cos{ \theta _1} + \cos{\theta_2} + \cos{\theta_3} = 0 , which is equivalent to a balanced mechanical system, the three numbers (analogous to "rods") must be symmetrically distributed. In this case 12 0 120^\circ apart, otherwise the system is imbalanced or sin θ 1 + sin θ 2 + sin θ 3 0 \sin{\theta_1} + \sin{\theta_2} + \sin{\theta_3} \ne 0 or cos θ 1 + cos θ 2 + cos θ 3 0 \cos{ \theta _1} + \cos{\theta_2} + \cos{\theta_3} \ne 0 or both 0 \ne 0 . Therefore, θ + 2 k π 3 \theta + \frac{2k\pi}{3} , where k = 0 , 1 , 2 k = 0,1,2 represent all possible sets of θ i \theta_i .

Chew-Seong Cheong - 5 years, 10 months ago
Sanjeet Raria
Aug 11, 2015

Notation: sin θ n = S n , cos θ n = C n \sin \theta_n=S_n, \cos \theta_n=C_n

Now, S 1 + S 2 + S 3 = 0 = C 1 + C 2 + C 3 S_1+S_2+S_3=0=C_1+C_2+C_3

Squaring both sides,

S 1 2 + S 2 2 + S 3 2 + 2 ( S 1 S 2 + S 2 S 3 + S 3 S 1 ) = 0.... ( 1 ) \Rightarrow S^2_1+S^2_2+S^2_3+2(S_1S_2+S_2S_3+S_3S_1)=0 ....(1) , and C 1 2 + C 2 2 + C 3 2 + 2 ( C 1 C 2 + C 2 C 3 + C 3 C 1 ) = 0.... ( 2 ) C^2_1+C^2_2+C^2_3+2(C_1C_2+C_2C_3+C_3C_1)=0 ....(2)

Adding ( 1 ) (1) and ( 2 ) (2) and solving further, 3 + 2 ( S 1 S 2 + C 1 C 2 + S 2 S 3 + C 2 C 3 + S 3 S 1 + C 3 C 1 ) = 0 \Rightarrow 3+2(S_1S_2+C_1C_2+S_2S_3+C_2C_3+S_3S_1+C_3C_1)=0 cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) = 3 2 \Rightarrow \cos (\theta_1-\theta_2)+\cos (\theta_2-\theta_3)+\cos (\theta_3-\theta_1)=\frac{-3} 2

Now on the right side 3 2 \frac{-3} 2 reminds us of 3 × cos 2 π 3 . 3\times \cos \frac{2\pi}{3}. So we know one such solution set. Based on the observation, we can assume WLOG that

θ 1 = 2 n π \large \boxed{\theta_1=2n\pi}

θ 2 = θ 1 + 2 π 3 \large \boxed{ \theta_2=\theta_1+\frac{2\pi}{3}}

θ 3 = θ 1 2 π 3 \large \boxed{\theta_3=\theta_1-\frac{2\pi}{3}}

Therefore one of the solution set is θ 1 = 0 , θ 2 = 2 π 3 , θ 3 = 2 π 3 \theta_1=0,\theta_2=\dfrac{2\pi}{3}, \theta_3=-\dfrac{2\pi}{3} , sin 2 ( θ 1 ) + sin 2 ( θ 2 ) + sin 2 ( θ 3 ) = 3 2 \Rightarrow \sin^2\left(\theta_1\right)+\sin^2\left(\theta_2\right)+\sin^2\left( \theta_3\right) =\boxed{\dfrac{3}{2}}

A tricky solution:

Choose θ 1 = 2 π 3 , θ 2 = 0 , θ 3 = 2 π 3 \,\theta_1=-\dfrac{2\pi}{3},\theta_2=0,\theta_3=\dfrac{2\pi}{3} , we get: sin 2 ( θ 1 ) + sin 2 ( θ 2 ) + sin 2 ( θ 3 ) = 3 2 \sin^2\left(\theta_1\right)+\sin^2\left(\theta_2\right)+\sin^2\left( \theta_3\right) =\boxed{\dfrac{3}{2}}

But how do you know that this value must be true for all possible sets of θ i \theta_i that satisfy the conditions?

Calvin Lin Staff - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...