Small ...smaller.. smallest

Algebra Level 2

If 1 + 3 + 9 + 27 + n terms > 1000 \underbrace{1+3+9+27+\cdots}_{n \text{ terms}} > 1000 , find the smallest value of n n .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the LHS be S S . Then we have:

S = 1 + 3 + 9 + 27 + n terms = 3 0 + 3 1 + 3 2 + 3 3 + . . . + 3 n 1 = k = 0 n 1 3 k = 3 n 1 3 1 = 3 n 1 2 \begin{aligned} S & = \underbrace{1 + 3 + 9 + 27 + \cdots}_{n \text{ terms}} \\ & = 3^0 + 3^1 + 3^2 + 3^3 + ... + 3^{n-1} \\ & = \sum_{k=0}^{n-1} 3^k = \frac {3^n-1}{3-1} = \frac {3^n-1}2 \end{aligned}

Therefore,

3 n 1 2 > 1000 3 n 1 > 2000 3 n > 1999 n log 3 > log 1999 n > log 1999 log 3 = 6.918 n = 7 \begin{aligned} \frac {3^n-1}2 & > 1000 \\ 3^n - 1 & > 2000 \\ 3^n & > 1999 \\ n \log 3 & > \log 1999 \\ n & > \frac {\log 1999}{\log 3} = 6.918 \\ \implies n & = \boxed{7} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...