Smaller number

Algebra Level 2

Two numbers are in the ratio 3 : 5 3 : 5 . If 9 9 is subtracted from each of them, then their ratio becomes 12 : 23 12 : 23 . Find the smaller number.


The answer is 33.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If the two numbers are x + 9 , y + 9 x+9, y+9 , then

x + 9 3 = y + 9 5 \dfrac{x+9}{3}=\dfrac{y+9}{5} 5 x + 45 = 3 y + 27 \Rightarrow 5x+45=3y+27

y 23 = x 12 \dfrac{y}{23}=\dfrac{x}{12} 12 y = 23 x \Rightarrow 12y=23x

Adding the left sides and the right sides together of the equations above, we get:

( 5 x + 45 ) + ( 12 y ) = ( 3 y + 27 ) + ( 23 x ) (5x+45)+(12y)=(3y+27)+(23x)

If we subtract 5 x + 3 y + 27 5x+3y+27 from both sides, we get:

9 y + 18 = 18 x 9y+18=18x y + 2 = 2 x \Rightarrow y+2=2x x = y + 2 2 \Rightarrow x=\dfrac{y+2}{2}

So substituting it to the 12 y = 23 x 12y=23x , we get:

12 y = 23 y + 2 2 12y=23\dfrac{y+2}{2} 24 y = 23 y + 46 \Rightarrow 24y=23y+46 y = 46 \Rightarrow y=46 x = y + 2 2 = 48 / 2 = 24 \Rightarrow x=\dfrac{y+2}{2}=48/2=24

Since 24 < 46 24<46 ,

answer = 24 + 9 = 33 \text{answer}=24+9=\boxed{33}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...