Smallest n

What is the smallest positive integer n n for which 50 ! 2 4 n \dfrac{50!}{24^{n}} is not an integer?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 17, 2018

n ! = k = 1 m p k q k n! = \displaystyle \prod_{k=1}^m p_k^{q_k} , the n n factorial is the product of powers q k q_k of all primes p k p_k smaller of equal to n n . The power of the k k th prime is given by q k = j = 1 n p k j \displaystyle q_k = \sum_{j=1}^\infty \left \lfloor \frac n{p_k^j}\right \rfloor , where \lfloor \cdot \rfloor denotes the floor function . Denote q k = q ( p k ) q_k = q(p_k) . Then we have:

q ( 2 ) = j = 1 50 2 j = 50 2 + 50 4 + 50 8 + 50 16 + 50 32 = 25 + 12 + 6 + 3 + 1 = 47 \begin{aligned} q(2) & = \sum_{j=1}^\infty \left \lfloor \frac {50}{2^j} \right \rfloor \\ & = \left \lfloor \frac {50}2 \right \rfloor + \left \lfloor \frac {50}4 \right \rfloor + \left \lfloor \frac {50}8 \right \rfloor + \left \lfloor \frac {50}{16} \right \rfloor + \left \lfloor \frac {50}{32} \right \rfloor \\ & = 25 + 12 + 6 + 3 + 1 = 47 \end{aligned}

q ( 3 ) = j = 1 50 3 j = 50 3 + 50 9 + 50 27 = 16 + 5 + 1 = 22 \begin{aligned} q(3) & = \sum_{j=1}^\infty \left \lfloor \frac {50}{3^j} \right \rfloor \\ & = \left \lfloor \frac {50}3 \right \rfloor + \left \lfloor \frac {50}9 \right \rfloor + \left \lfloor \frac {50}{27} \right \rfloor \\ & = 16 + 5 + 1 = 22 \end{aligned}

Therefore, n ! 2 4 n = 2 47 3 22 5 12 43 47 2 3 n 3 n \dfrac {n!}{24^n} = \dfrac {2^{47}\cdot 3^{22}\cdot 5^{12}\cdots 43\cdot 47}{2^{3n}3^n} is not an integer, when 2 4 n ∤ 50 ! 24^n \not \mid 50! or 3 n > 47 3n > 47 or n > 22 n > 22 . n 16 \implies n \ge \boxed{16} .

Giorgos K.
Mar 17, 2018

Mathematica

Min@Select[Range@100,!IntegerQ[50!/24^#]&]

returns *16 *

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...