Smallest Number n

Algebra Level 2

What is the smallest value of the positive integer n n such that n 300 > 3 500 n^{300}>3^{500}

343 8 6 7 244

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

n 300 > 3 500 n > 3 5 3 n > 3 2 1 3 n > 9 3 1 3 n 3 > 729 3 n 3 > 243 n 7 \begin{aligned}n^{300}&>3^{500}\\\\ n&>3^{\tfrac{5}{3}}\\\\ n&>3^{2-\tfrac{1}{3}}\\\\ n&>\dfrac{9}{3^{\tfrac{1}{3}}}\\\\ n^3&>\dfrac{729}{3}\\\\ n^3&>243\\\\ \implies n&\geq\color{#EC7300}\boxed{\color{#333333}7}\end{aligned}

Mr. India
Apr 8, 2019

n 300 > 3 500 n^{300}>3^{500}

( n 3 ) 100 > ( 3 5 ) 100 \Rightarrow (n^3)^{100}>(3^5)^{100}

n 3 > 3 5 n 3 > 243 \Rightarrow n^3>3^5 \rightarrow n^3>243

n m i n = 7 \Rightarrow n_{min}=7

n>3 to the power of (5/3) or 6.24025. Hence the smallest integral value of n is 7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...