Smallest Prime Number

Algebra Level 2

What is the smallest prime factor of 2 111 + 3 111 ? \large 2^{111}+3^{111}?

2 2 2 111 2^{111} None of the above 3 111 3^{111} 3 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anirudh Sreekumar
Oct 14, 2017

2 111 + 3 111 ( m o d 2 ) = 0 111 + 1 111 ( m o d 2 ) = 1 ( m o d 2 ) 2 111 + 3 111 ( m o d 3 ) = ( 1 ) 111 + 0 111 ( m o d 3 ) = 1 ( m o d 3 ) It is not divisible by 2 or 3. \begin{aligned}2^{111}+3^{111} \pmod{2}&=0^{111}+1^{111} \pmod{2}=1 \pmod{2}\\ 2^{111}+3^{111} \pmod{3}&=(-1)^{111}+0^{111} \pmod{3}=-1 \pmod{3}\\\\ \implies\text{It is not divisible} &\text{ by 2 or 3.}\end{aligned}

Note that, \text{Note that,}

2 ( m o d 5 ) = 3 ( m o d 5 ) 2 111 + 3 111 ( m o d 5 ) = ( 3 ) 111 + 3 111 ( m o d 5 ) = 0 ( m o d 5 ) Thus 5 is the smallest prime that divides 2 111 + 3 111 \begin{aligned}2\pmod{5}&=-3\pmod{5}\\ 2^{111}+3^{111} \pmod{5}&=(-3)^{111}+3^{111} \pmod{5}=0 \pmod{5}\\\\ \text{Thus 5 is the smallest} &\text{ prime that divides } 2^{111}+3^{111}\end{aligned}

That is the right solution. Also, we can generalize it to 2 n + 3 n 2^n+3^n . Thank you for sharing your solution.

Hana Wehbi - 3 years, 7 months ago

option should be none of the below :)

Harinder Choudhary - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...