Smells Like Something's Stirling

Calculus Level 1

What is the value of the following limit?

lim n 1 × 2 × × n n n \lim_{n\to\infty} \dfrac{ \sqrt[n]{1 \times 2 \times \cdots \times n} }n

0 0 1 π \frac{1}{\pi} 1 e \frac{1}{e} 4 9 \frac{4}{9} 1 2 \frac{1}{2} 1 ln 2 1-\ln{2} ζ ( 3 ) 4 \frac{\zeta{(3)}}{4} 1 1 ζ ( 2 ) = 1 6 π 2 1-\frac{1}{\zeta{(2)}}=1-\frac{6}{{\pi}^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nick Turtle
May 7, 2018

The function f ( x ) \large f(x) is defined as x ! x \large\sqrt[x]{x!} .

Now, using Stirling's approximation that n ! 2 π n ( n e ) n \large n! \sim \sqrt{2\pi n}{\left(\frac{n}{e}\right)}^n , we rewrite the above function as f ( x ) 2 π x ( x e ) x x = 2 π x 2 x x e \large\begin{aligned}f(x) &\sim \sqrt[x]{\sqrt{2\pi x}{\left(\frac{x}{e}\right)}^x}\\ &=\sqrt[2x]{2\pi x}\frac{x}{e}\end{aligned}

Then, f ( x ) x 2 π x 2 x e \large\frac{f(x)}{x} \sim \frac{\sqrt[2x]{2\pi x}}{e}

As x \large x\to \infty , f ( x ) x = 1 e \large\frac{f(x)}{x}=\frac{1}{e}

How does the term ( 2πx) ^1/2x tend to 1 as x approaches infinity ?

Souradeep Banerjee - 2 years, 8 months ago

Log in to reply

(2\pi x)^{\frac{1}{2x}} = e^{\frac{\ln(2 \pi x)}{2x} . The exponent tends to 0 as x x tends to infinity. Hope that helps.

Varsha Dani - 2 years, 4 months ago
X X
May 8, 2018

I used Riemann's sum. f ( x ) x = ( 1 x × 2 x × 3 x × . . . × x x ) 1 x \frac{f(x)}{x}=(\frac1x\times\frac2x\times\frac3x\times...\times\frac xx)^{\frac1x} l n ( f ( x ) x ) = 1 x [ l n ( 1 x ) + l n ( 2 x ) + l n ( 3 x ) + . . . + ln ( x x ) ] ln(\frac{f(x)}{x})=\frac1x[ln(\frac1x)+ln(\frac2x)+ln(\frac3x)+...+\ln(\frac xx)] lim x l n ( f ( x ) x ) = 0 1 l n x = 1 \lim_{x\to\infty}ln(\frac{f(x)}{x})=\int_{0}^{1}lnx=1 lim x f ( x ) x = e \lim_{x\to\infty}\frac{f(x)}{x}=e

why does the integral of lnx from 0 to 1 equal 1 ?

Zhong Jianer - 1 year, 11 months ago

The result of the integral should be -1. I think the first solution is more accurate because in the indetermined form we could use L'Hosptal rule to calculate the limit and it turns out to be 1.

Zhong Jianer - 1 year, 11 months ago

Suppose one looked at the natural log of this limit. One could rewrite the limit as: lim x ( l n ( x ! ) x l n ( x ) ) / x \lim_{x \to \infty} (ln(x!)-xln(x))/x Using L’Hopital’s rule and the fact that the derivative of the natural logarithm of the gamma function gives you the digamma function. lim x ( ψ ( x + 1 ) l n ( x ) 1 ) / 1 \lim_{x \to \infty} (ψ(x+1)-ln(x)-1)/1 Since ψ ( x + 1 ) = γ + H x ψ(x+1)=-\gamma+H_x , where H x H_x is the xth Harmonic number and γ \gamma is the Euler Mascheroni constant, making the substitution yields: lim x ( γ + H x l n ( x ) 1 ) / 1 = l i m x ( γ + γ 1 ) / 1 = 1 \lim_{x \to \infty} (-\gamma+H_x-ln(x)-1)/1=lim_{x \to \infty} (-\gamma+\gamma-1)/1=-1 Exponentiating both sides will give us our answer: e x p ( 1 ) exp(-1) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...