So complicated

Algebra Level 4

Given x x and y y are distinct real numbers such that x 2 + y 2 x 2 y 2 + x 2 y 2 x 2 + y 2 = 4 \frac{x^{2}+y^{2}}{x^{2}-y^{2}}+\frac{x^{2}-y^{2}}{x^{2}+y^{2}}=4 If x 8 + y 8 x 8 y 8 + x 8 y 8 x 8 + y 8 \frac{x^{8}+y^{8}}{x^{8}-y^{8}}+\frac{x^{8}-y^{8}}{x^{8}+y^{8}} can be expressed as a b \frac{a}{b} , where a a and b b are positive numbers and gcd ( a , b ) = 1 \text{gcd}(a,b)=1 , find a + b a+b .


The answer is 61.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 17, 2017

x 2 + y 2 x 2 y 2 + x 2 y 2 x 2 + y 2 = 4 ( x 2 + y 2 ) 2 + ( x 2 y 2 ) 2 = 4 ( x 2 + y 2 ) ( x 2 y 2 ) 2 ( x 4 + y 4 ) = 4 ( x 4 y 4 ) x 4 + y 4 = 2 x 4 2 y 4 x 4 = 3 y 4 \begin{aligned} \frac {x^2+y^2}{x^2-y^2} + \frac {x^2-y^2}{x^2+y^2} & = 4 \\ \left(x^2+y^2 \right)^2 + \left(x^2-y^2 \right)^2 & = 4\left(x^2+y^2 \right)\left(x^2-y^2 \right) \\ 2 \left(x^4+y^4 \right) & = 4 \left(x^4-y^4 \right) \\ x^4+y^4 & = 2 x^4- 2 y^4 \\ \implies x^4 & = 3y^4 \end{aligned}

Then, we have:

x 8 + y 8 x 8 y 8 + x 8 y 8 x 8 + y 8 = 9 y 8 + y 8 9 y 8 y 8 + 9 y 8 y 8 9 y 8 + y 8 = 10 8 + 8 10 = 5 4 + 4 5 = 41 20 \begin{aligned} \frac {x^8+y^8}{x^8-y^8} + \frac {x^8-y^8}{x^8+y^8} & = \frac {9y^8+y^8}{9y^8-y^8} + \frac {9y^8-y^8}{9y^8+y^8} \\ & = \frac {10}8+\frac 8{10} = \frac 54 + \frac 45 = \frac {41}{20} \end{aligned}

a + b = 41 + 20 = 61 \implies a+b=41+20 = \boxed{61}

I also solved like this brother.

Bibhor Singh - 3 years, 2 months ago

How do you explain it to someone

Abby Pulver - 3 years, 1 month ago

Log in to reply

I don't know what you mean.

Chew-Seong Cheong - 3 years, 1 month ago
Jd Money
Jul 17, 2017

x 2 + y 2 x 2 y 2 + x 2 y 2 x 2 + y 2 = 4 \frac {x^2+y^2}{x^2-y^2}+\frac {x^2-y^2}{x^2+y^2}=4

( x 2 + y 2 ) 2 ( x 2 y 2 ) ( x 2 + y 2 ) + ( x 2 y 2 ) 2 ( x 2 + y 2 ) ( x 2 y 2 ) = 4 \frac {(x^2+y^2)^2}{(x^2-y^2)(x^2+y^2)}+\frac {(x^2-y^2)^2}{(x^2+y^2)(x^2-y^2)}=4

x 4 + 2 x 2 y 2 + y 4 + x 4 2 x 2 y 2 + y 4 x 4 y 4 = 4 \frac {x^4+2x^2y^2+y^4+x^4-2x^2y^2+y^4}{x^4-y^4}=4

2 x 4 + 2 y 4 x 4 y 4 = 4 \frac {2x^4+2y^4}{x^4-y^4}=4

x 4 + y 4 x 4 y 4 = 2 \frac {x^4+y^4}{x^4-y^4}=2

x 4 + y 4 x 4 y 4 + x 4 y 4 x 4 + y 4 = x 4 + y 4 x 4 y 4 + 1 x 4 + y 4 x 4 y 4 = 2 + 1 2 = 5 2 \frac {x^4+y^4}{x^4-y^4}+\frac {x^4-y^4}{x^4+y^4}=\frac {x^4+y^4}{x^4-y^4}+\frac{1}{\frac {x^4+y^4}{x^4-y^4}}=2+\frac{1}{2}=\frac{5}{2}

( x 4 + y 4 ) 2 ( x 4 y 4 ) ( x 4 + y 4 ) + ( x 4 y 4 ) 2 ( x 4 + y 4 ) ( x 4 y 4 ) = 5 2 \frac {(x^4+y^4)^2}{(x^4-y^4)(x^4+y^4)}+\frac {(x^4-y^4)^2}{(x^4+y^4)(x^4-y^4)}=\frac{5}{2}

x 8 + 2 x 4 y 4 + y 8 + x 8 2 x 4 y 4 + y 8 x 8 y 8 = 5 2 \frac {x^8+2x^4y^4+y^8+x^8-2x^4y^4+y^8}{x^8-y^8}=\frac{5}{2}

2 x 8 + 2 y 8 x 8 y 8 = 5 2 \frac {2x^8+2y^8}{x^8-y^8}=\frac{5}{2}

x 8 + y 8 x 8 y 8 = 5 4 \frac {x^8+y^8}{x^8-y^8}=\frac{5}{4}

x 8 + y 8 x 8 y 8 + x 8 y 8 x 8 + y 8 = x 8 + y 8 x 8 y 8 + 1 x 8 + y 8 x 8 y 8 = 5 4 + 4 5 = 41 20 \frac {x^8+y^8}{x^8-y^8}+\frac {x^8-y^8}{x^8+y^8}=\frac {x^8+y^8}{x^8-y^8}+\frac {1}{\frac{x^8+y^8}{x^8-y^8}}=\frac{5}{4}+\frac{4}{5}=\frac{41}{20}

a + b = 41 + 20 = 61 a+b=41+20=\boxed{61}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...