How many ordered real triples ( x , y , z ) satisfy the following equation - 3 x 2 + 3 y 2 + 3 z 2 = 2 x y + 2 y z + 2 z x ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
My solution is nearly the same as @Dheeman Kuaner 's:
( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 = x 2 + y 2 + z 2 − 2 x y − 2 y z − 2 x z = x 2 + y 2 + z 2 − 3 x 2 − 3 y 2 − 3 z 2 = − 2 ( x 2 + y 2 + z 2 )
( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 has to be non-negativ, and − 2 ( x 2 + y 2 + z 2 ) has to be non-positive (since a square number can't be negativ), so the equation will only be true, if ( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 = − 2 ( x 2 + y 2 + z 2 ) = x = y = z = 0
I used the Cauchy-Schwarz inequality to determine 2 x y + 2 y z + 2 z x ≤ 2 x 2 + 2 y 2 + 2 z 2 . And if one of x , y , z are nonzero, then 2 x y + 2 y z + 2 z x ≤ 2 x 2 + 2 y 2 + 2 z 2 < 3 x 2 + 3 y 2 + 3 z 2 . And, hence, they can only be equal if x = y = z = 0 .
Problem Loading...
Note Loading...
Set Loading...