So good

Algebra Level 3

How many ordered real triples ( x , y , z ) (x,y,z) satisfy the following equation - 3 x 2 + 3 y 2 + 3 z 2 = 2 x y + 2 y z + 2 z x 3x^{2}+3y^{2}+3z^{2}=2xy + 2yz + 2zx ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dheeman Kuaner
Jun 22, 2017

Áron Bán-Szabó
Jun 24, 2017

My solution is nearly the same as @Dheeman Kuaner 's:

( x y ) 2 + ( y z ) 2 + ( z x ) 2 = x 2 + y 2 + z 2 2 x y 2 y z 2 x z = x 2 + y 2 + z 2 3 x 2 3 y 2 3 z 2 = 2 ( x 2 + y 2 + z 2 ) (x-y)^2+(y-z)^2+(z-x)^2=x^2+y^2+z^2-2xy-2yz-2xz=x^2+y^2+z^2-3x^2-3y^2-3z^2=-2(x^2+y^2+z^2)

( x y ) 2 + ( y z ) 2 + ( z x ) 2 (x-y)^2+(y-z)^2+(z-x)^2 has to be non-negativ, and 2 ( x 2 + y 2 + z 2 ) -2(x^2+y^2+z^2) has to be non-positive (since a square number can't be negativ), so the equation will only be true, if ( x y ) 2 + ( y z ) 2 + ( z x ) 2 = 2 ( x 2 + y 2 + z 2 ) = x = y = z = 0 (x-y)^2+(y-z)^2+(z-x)^2=-2(x^2+y^2+z^2)=x=y=z=0

James Wilson
Jan 20, 2018

I used the Cauchy-Schwarz inequality to determine 2 x y + 2 y z + 2 z x 2 x 2 + 2 y 2 + 2 z 2 2xy+2yz+2zx\leq 2x^2+2y^2+2z^2 . And if one of x , y , z x,y,z are nonzero, then 2 x y + 2 y z + 2 z x 2 x 2 + 2 y 2 + 2 z 2 < 3 x 2 + 3 y 2 + 3 z 2 2xy+2yz+2zx\leq 2x^2+2y^2+2z^2<3x^2+3y^2+3z^2 . And, hence, they can only be equal if x = y = z = 0 x=y=z=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...