So Many Floor Functions!

Algebra Level 5

x x x x = 88 \large x\left\lfloor x \left\lfloor x \left\lfloor x \right\rfloor\right\rfloor\right\rfloor = 88

Solve the equation above in the set of positive real numbers. If the smallest real value you found is of the following form m n \dfrac{m}{n} , where m m and n n are coprime positive integers, evaluate the product m n mn .


This question is the similar to the one from 1998 Czech Olympiad test


The answer is 154.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A better solution from Kushagra Sahni

Let f ( x ) = x x x x f(x) = x\lfloor x \lfloor x \lfloor x \rfloor \rfloor \rfloor , then when x = 3 x=3 , f ( 3 ) = 3 4 = 81 f(3) = 3^4 = 81 . Similarly when x = 4 x=4 , f ( 4 ) = 4 4 = 256 f(4)=4^4=256 , therefore, the solution x x is ( 3 , 4 ) \in (3,4) . Now, let x = 3 + 1 y x=3+\dfrac 1y , where y y is a natural number larger than 1. Then, we have:

x x x x = 88 x x x = 88 x \begin{aligned} x\lfloor x \lfloor x \lfloor x \rfloor \rfloor \rfloor & = 88 \\ \lfloor x \lfloor x \lfloor x \rfloor \rfloor \rfloor & = \color{#3D99F6}\frac {88}x \end{aligned}

We note that 88 x \color{#3D99F6}\dfrac {88}x is an integer. Let the integer be p p , then:

88 x = p p x = 88 p ( 3 + 1 y ) = 88 p y ( 3 y + 1 ) = 88 p y is an integer and let it be q q ( 3 y + 1 ) = 88 \begin{aligned} \frac {88}x & = p \\ px & = 88 \\ p \left(3+\frac 1y\right) & = 88 \\ {\color{#3D99F6}\frac py} (3y + 1) & = 88 & \small \color{#3D99F6} \frac py \text{ is an integer and let it be }q \\ {\color{#3D99F6}q} (3y + 1) & = 88 \end{aligned}

We note that q q can only be 1, 2, 4, 8 and 11, when y = 29 , 43 3 , 7 , 10 3 y = 29, \dfrac {43}3, 7, \dfrac {10}3 and 7 3 \dfrac 73 respectively. There are only two cases when y y is an integer 29 and 7. We note that:

f ( 3 + 1 29 ) = ( 3 + 1 29 ) 3 + 1 29 3 + 1 29 3 + 1 29 81.931 Not a solution \begin{aligned} f\left(3+\frac 1{29}\right) & = \left(3+\frac 1{29}\right) \left \lfloor 3+\frac 1{29} \left \lfloor 3+\frac 1{29} \left \lfloor 3+\frac 1{29} \right \rfloor \right \rfloor \right \rfloor \approx 81.931 & \small \color{#D61F06} \text{Not a solution} \end{aligned}

f ( 3 + 1 7 ) = ( 3 + 1 7 ) 3 + 1 7 3 + 1 7 3 + 1 7 = 88 The solution \begin{aligned} f\left(3+\frac 17 \right) & = \left(3+\frac 17 \right) \left \lfloor 3+\frac 17 \left \lfloor 3+\frac 17 \left \lfloor 3+\frac 17 \right \rfloor \right \rfloor \right \rfloor = 88 & \small \color{#3D99F6} \text{The solution} \end{aligned}

Therefore, x = 3 + 1 7 = 22 7 x = 3 + \dfrac 17 = \dfrac {22}7 m + n = 22 + 7 = 29 \implies m+n = 22+7 = \boxed{29}


My solution

Let f ( x ) = x x x x f(x) = x\lfloor x \lfloor x \lfloor x \rfloor \rfloor \rfloor , then when x = 3 x=3 , f ( 3 ) = 3 4 = 81 f(3) = 3^4 = 81 . Similarly when x = 4 x=4 , f ( 4 ) = 4 4 = 256 f(4)=4^4=256 , therefore, the solution x x is ( 3 , 4 ) \in (3,4) . Then, we have:

f ( x ) = x x x x = ( 3 + { x } ) ( 3 + { x } ) ( 3 + { x } ) ( 3 + { x } ) = ( 3 + { x } ) ( 3 + { x } ) 9 + 3 { x } Put { x } = 1 3 f ( 3 1 3 ) = ( 3 + 1 3 ) ( 3 + 1 3 ) 9 + 1 = 10 3 30 + 10 3 = 110 > 81 { x } < 1 3 f ( 3 + { x } ) = ( 3 + { x } ) 27 + 9 { x } Let { x } = 2 9 f ( 3 + 2 9 ) = ( 3 + 1 9 ) ( 27 + 2 ) = 28 × 29 9 90.222 > 88 { x } < 2 9 f ( 3 + { x } ) = ( 3 + { x } ) 27 + 1 28 ( 3 + { x } ) = 88 3 + { x } = 88 28 x = 22 7 \begin{aligned} f(x) & = x\lfloor x \lfloor x \lfloor x \rfloor \rfloor \rfloor \\ & = (3+\{ x \}) \lfloor (3+\{ x \}) \lfloor (3+\{ x \}) \lfloor (3+\{ x \}) \rfloor \rfloor \rfloor \\ & = (3+\{ x \}) \lfloor (3+\{ x \}) \lfloor 9+3\{ x \} \rfloor \rfloor & \small \color{#3D99F6} \text{Put }\{x\} = \frac 13\\ f \left( 3\frac 13 \right) & = \left(3+\frac 13 \right) \left \lfloor \left(3+\frac 13 \right) \lfloor 9+1 \rfloor \right \rfloor \\ & = \frac {10}3 \left \lfloor 30+\frac {10}3 \right \rfloor = 110 > 81 \\ \implies \{x\} & < \frac 13 \\ \implies f \left(3 + {\color{#3D99F6}\{x\}} \right) & = (3+{\color{#3D99F6}\{x\}}) \lfloor 27+9{\color{#3D99F6}\{x\}} \rfloor & \small \color{#3D99F6} \text{Let } \{x\} = \frac 29 \\ f \left(3 + \frac 29 \right) & = \left(3+\frac 19 \right) (27+2) \\ & = \frac {28 \times 29}9 \approx 90.222 > 88 \\ \implies \{x\} & < \frac 29 \\ \implies f \left(3 + \{x\} \right) & = (3+\{x\}) \lfloor 27+{\color{#D61F06}1} \rfloor \\ \implies 28(3+\{x\}) & = 88 \\ 3+\{x\} & = \frac {88}{28} \\ \implies x & = \frac {22}7 \end{aligned}

m n = 22 × 7 = 154 \implies mn = 22 \times 7 = \boxed{154}

90.2222 > 88

Reynan Henry - 4 years, 5 months ago

Log in to reply

Thanks. A typo.

Chew-Seong Cheong - 4 years, 5 months ago

Perfect solution! This is what I am expecting!

Michael Huang - 4 years, 5 months ago

Perfect till saying x is between 3 and 4. Then let x=3+1/y, where y is a positive integer greater than 1. Now, we know 88/x must be an integer, which forces y to be 7 or 29(by some simple calculations). Putting these 2 values of y in x we find only x=3+1/7 works. So that is the answer.

Kushagra Sahni - 4 years, 4 months ago

Log in to reply

Thanks for a better solution. I have added it above.

Chew-Seong Cheong - 4 years, 4 months ago

And we have x x is approximately equal to π \pi

Fidel Simanjuntak - 4 years, 4 months ago

Log in to reply

π 22 7 \pi \ne \dfrac {22}7 . It is only an approximation.

Chew-Seong Cheong - 4 years, 4 months ago

Log in to reply

Yeah, it's just approximately equal...

Fidel Simanjuntak - 4 years, 4 months ago

You did a typo. It supposed to be p ( 3 + 1 y ) p\left(3 + \frac{1}{y} \right) ; not n ( 3 + 1 y ) n\left( 3+ \frac{1}{y} \right) .

Fidel Simanjuntak - 4 years, 4 months ago

Log in to reply

Thanks. Changed it.

Chew-Seong Cheong - 4 years, 4 months ago

Log in to reply

You're Welcome, sir..

Fidel Simanjuntak - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...