So Many Geometric Sequences

Algebra Level 3

( 1 + 1 2 + 1 4 + 1 8 + ) × ( 1 + 1 3 + 1 9 + 1 27 + ) × ( 1 + 1 4 + 1 16 + 1 64 + ) × × ( 1 + 1 n + 1 n 2 + ) \begin{aligned} &\left( 1 + \dfrac12 + \dfrac14 + \dfrac18 + \cdots\right) \times\left( 1 + \dfrac13 + \dfrac19 + \dfrac1{27} + \cdots \right) \\\\ &\times \left( 1 + \dfrac14 + \dfrac1{16} + \dfrac1{64} + \cdots \right)\times \cdots \times\left( 1 + \dfrac1n + \dfrac1{n^2} + \cdots \right) \end{aligned}

The expression above represents the product of infinite geometric progression sums .

Simplify this expression.

n 2 n^2 n n n 3 n^3 None of these options

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P = ( 1 + 1 2 + 1 4 + 1 8 + . . . ) ( 1 + 1 3 + 1 9 + 1 27 + . . . ) ( 1 + 1 4 + 1 16 + 1 64 + . . . ) . . . ( 1 + 1 n + 1 n 2 + 1 n 3 + . . . ) = 1 1 1 2 × 1 1 1 3 × 1 1 1 4 × . . . × 1 1 1 n = 2 × 3 2 × 4 3 × . . . × n n 1 = 2 × 3 2 × 4 3 × . . . × n n 1 = n \begin{aligned} P & = \left(1+\frac 12+ \frac 14+ \frac 18 +...\right) \left(1+\frac 13+ \frac 19+ \frac 1{27} +...\right) \left(1+\frac 14+ \frac 1{16}+ \frac 1{64} +...\right) ... \left(1+\frac 1n+ \frac 1{n^2}+ \frac 1{n^3} +...\right) \\ & = \frac 1{1-\frac 12} \times \frac 1{1-\frac 13} \times \frac 1{1-\frac 14} \times ... \times \frac 1{1-\frac 1n} \\ & = 2 \times \frac 32 \times \frac 43 \times ... \times \frac n{n-1} \\ & = \cancel{2} \times \frac {\cancel{3}}{\cancel{2}} \times \frac {\cancel{4}}{\cancel{3}} \times ... \times \frac n{\cancel{n-1}} \\ & = \boxed{n} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...