Radical Integral Of Radicals

Calculus Level 2

3 6 ( x + 12 x 36 + x 12 x 36 ) d x \int_3^6 \left ( \sqrt{x + \sqrt{12x-36}} + \sqrt{x - \sqrt{12x-36}} \ \right ) \ dx

If the definite integral above can be expressed as a b a \sqrt b where a , b a,b are positive integers with b b square free, then what is the value of a b ab ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

3 6 ( x + 12 x 36 + x 12 x 36 ) d x \int_3^6 \left ( \sqrt{x + \sqrt{12x-36}} + \sqrt{x - \sqrt{12x-36}} \ \right ) \ dx

put t = x 3 t=x-3 . Rewrite given integral in terms of t t .

0 3 ( t + 3 + 2 3 t + t + 3 2 3 t ) d t \Rightarrow \int _{ 0 }^{ 3 } \left( \sqrt { t+3+2\sqrt { 3t } } +\sqrt { t+3-2\sqrt { 3t } } \right) dt

= 0 3 ( ( t + 3 ) 2 + ( 3 t ) 2 ) d t = 0 3 ( t + 3 + 3 t ) d t ( ( 3 t ) 2 = 3 t t ( 0 , 3 ) ) = 0 3 2 3 d t = 6 3 a × b = 18 =\int _{ 0 }^{ 3 } \left( \sqrt { { (\sqrt { t } +\sqrt { 3 } ) }^{ 2 } } +\sqrt { { (\sqrt { 3 } -\sqrt { t } ) }^{ 2 } } \right) dt\\ =\int _{ 0 }^{ 3 } \left( \sqrt { t } +\sqrt { 3 } +\sqrt { 3 } -\sqrt { t } \right) dt \\ (\because \sqrt { { (\sqrt { 3 } -\sqrt { t } ) }^{ 2 } } =\sqrt { 3 } -\sqrt { t } \quad \forall \quad t\in (0,3))\\ =\int _{ 0 }^{ 3 } 2\sqrt { 3 } dt=6\sqrt { 3 } \\ \Rightarrow a\times b=\boxed { 18 }

wow, nice solution :o :o :o

Natsir Muhammad - 6 years, 2 months ago

I wanna ask why it's root 3- root t
Not root t -root 3 I tried both and the result in each one is differernt

Mai Eshiba - 4 years, 1 month ago

Log in to reply

I have tried to evaluate the integral using this way also, and I got ab=12 in the end.

Kevin Fung - 3 years, 6 months ago

Hi! I know it's been a long time but I believe the reason why it should be sqrt(3)-sqrt(t) is that for the range of values we are working with ( x = 3 to x = 6) gives a negative value for sqrt(t)-sqrt(3), which is just invalid because we want the principal root of the expression t+3-2sqrt(t). Thus, we had to flip them over.

Jehad Aly - 2 years ago

Log in to reply

Yep, that’s exactly right. By definition the principle square root function outputs a positive value, so for example the sqrt((-5)^2) would be 5, not -5.

John Generalissimo - 2 months, 3 weeks ago

Can someone tell me how i d9d it wong, i got 4root 3=12 but i used u=sqrt(12x-36)

A T - 1 year, 11 months ago

Log in to reply

Actually, you made the same mistake I made. We should take the mode of the term after the square and square root is cancelled, as the above solution has discussed.

Laxmi Narayan Bhandari Xth B - 4 months, 2 weeks ago

Wait, you can also get 4sqrt3 if you write ( sqrt3 -sqrtx) as (sqrtx-sqrt3), try it out

A T - 1 year, 11 months ago

So 4sqrt3 for asqrtb is also another possible answer, so 12 is also right

A T - 1 year, 11 months ago

Log in to reply

It’s not, because the principle square root function is always positive by definition therefore if root x - root 3 is negative (in this case, it is), the principle square root of its square would return the positive counterpart which is root 3 - root x, leading to the correct answer. for example the sqrt((-5)^2) would be 5, not -5.

John Generalissimo - 2 months, 3 weeks ago
Daniel Xiang
Feb 13, 2018

let f ( x ) = x + 12 x 36 + x 12 x 36 f(x) = \sqrt{x+\sqrt{12x-36}} + \sqrt{x-\sqrt{12x-36}} ,

we have

f ( x ) 2 = x + 12 x 36 + 2 ( x + 12 x 36 ) ( x 12 x 36 ) + x 12 x 36 = 2 x + 2 x 2 ( 12 x 36 ) = 2 x + 2 ( x 6 ) 2 = 2 x + 2 ( 6 x ) ( a 2 = a a 0 ) = 12 \begin{aligned} f(x)^2 &=x+\sqrt{12x-36} + 2\sqrt{(x+\sqrt{12x-36})(x-\sqrt{12x-36})} + x - \sqrt{12x-36} \\&= 2x + 2\sqrt{x^2-(12x-36)} \\&= 2x + 2\sqrt{(x-6)^2} \\&= 2x + 2(6-x)\quad\quad (\sqrt{a^2}=a \space\space \forall a \geq 0) \\&= 12 \end{aligned}

thus

3 6 f ( x ) d x = ( 6 3 ) 12 = 6 3 \displaystyle \int_3^6 f(x)\mathrm dx = (6-3)\sqrt{12} = \boxed{6\sqrt{3}}

at starting i made mistake in opening the square root with positive sign but later i realised that intergration in from 3 to 6 so the square root should be opened with negative sign. Nice one.

Anurag Pandey - 3 years ago

We can also use u 2 = x 3 u^2 = x - 3 , then:

{ x = 6 u = 3 x = 3 u = 0 x = u 2 + 3 d x = 2 u d u \begin{cases} x = 6 & \Rightarrow u = \sqrt{3} \\ x = 3 & \Rightarrow u = 0 \\ x = u^2 + 3 & \Rightarrow dx = 2u \space du \end{cases}

Let the integral be I I , then:

I = 3 6 ( x + 12 x 36 + x 12 x 36 ) d x = 0 3 ( u 2 + 3 + 12 u + u 2 + 3 12 u ) 2 u d u = 0 3 ( u 2 + 2 3 u + 3 + u 2 2 3 u + 3 ) 2 u d u = 0 3 ( ( 3 + u ) 2 + ( 3 u ) 2 ) 2 u d u = 0 3 ( 3 + u + 3 u ) 2 u d u = 0 3 4 3 u d u = 2 3 [ u 2 ] 3 0 = 6 3 \begin{aligned} I & = \int_3^6 \left(\sqrt{x+\sqrt{12x-36}}+\sqrt{x-\sqrt{12x-36}} \right) dx \\ & = \int_0^{\sqrt{3}} \left(\sqrt{u^2 + 3 + \sqrt{12}u} +\sqrt{u^2+3-\sqrt{12}u} \right) 2u \space du \\ & = \int_0^{\sqrt{3}} \left(\sqrt{u^2 + 2\sqrt{3}u+3} +\sqrt{u^2-2\sqrt{3}u+3} \right) 2u \space du \\ & = \int_0^{\sqrt{3}} \left(\sqrt{(\sqrt{3}+u)^2} +\sqrt{(\sqrt{3}-u)^2} \right) 2u \space du \\ & = \int_0^{\sqrt{3}} \left(\sqrt{3}+u + \sqrt{3}-u \right) 2u \space du \\ & = \int_0^{\sqrt{3}} 4 \sqrt{3} u \space du \\ & = 2\sqrt{3}\left[u^2\right]^{\sqrt{3}_0} \\ & = 6\sqrt{3} \end{aligned}

a b = 6 × 3 = 18 \Rightarrow ab = 6\times 3 = \boxed{18} .

We can substitute x = 3 sec^2 z to finish the job mentally...

Arunava Das - 3 years, 4 months ago

Log in to reply

Why don't you show the solution?

Chew-Seong Cheong - 3 years, 4 months ago
Naren Bhandari
Oct 6, 2017

We have I = 3 6 ( x + 12 x 36 + x 12 x 36 ) d x I=\displaystyle\int_{3}^{6}\left(\sqrt{x+\sqrt{12x-36}}+\sqrt{x-\sqrt{12x-36}}\right)\,dx Puting 12 x 36 = u 2 x = u 2 + 36 12 12x-36 =u^2 \Rightarrow x = \frac{u^2+36}{12} and differentiating we get d x = 1 12 u d u \,dx =\frac{1}{12}u\,du Rewriting the expressions I = 3 6 ( x + 12 x 36 + x 12 x 36 ) d x I=\displaystyle\int_{3}^{6}\left(\sqrt{x+\sqrt{12x-36}}+\sqrt{x-\sqrt{12x-36}}\right)\,dx I = 3 6 ( u 2 + 36 12 + u + u 2 + 36 12 u ) 1 12 u d u I=\displaystyle\int_{3}^{6}\left(\sqrt{\frac{u^2+36}{12}+u}+\sqrt{\frac{u^2+36}{12}-u}\right)\frac{1}{12} u \,du I = 1 12 3 6 ( ( u + 6 ) 2 12 + ( u 6 ) 2 12 ) u d u I=\frac{1}{ 12}\displaystyle\int_{3}^{6}\left(\sqrt{\frac{(u+6)^2}{12}}+\sqrt{\frac{(u-6)^2}{12}}\right)u\,du

I = 1 12 3 6 ( ( u + 6 ) 2 12 + ( u 6 ) 2 12 ) u d u I=\frac{1}{12}\displaystyle\int_{3}^{6}\left(\sqrt{\frac{(u+6)^2}{12}}+\sqrt{\frac{(u-6)^2}{12}}\right)u\,du I = 1 12 1 2 3 6 2 u 2 d u I = \frac{1}{12\sqrt 12}\displaystyle\int_{3}^{6} 2u^2\,du I = 2 3 × 12 1 2 [ u 3 ] 3 6 I = \frac{2}{3\times 12\sqrt 12}\left[u^3\right]_{3}^{6}

I = 2 3 × 12 1 2 [ 12 x 3 12 x 3 ] 3 6 I = \frac{2}{3\times 12\sqrt 12}\left[12x-3\sqrt{12x-3}\right]_{3}^{6} I = 36 × 6 6 1 2 6 3 = a b I = \frac{36\times6}{6\sqrt 12}\Rightarrow 6\sqrt 3 = a\sqrt b

Therefore, a b = 6 × 3 18 ab = 6\times3 \implies 18

This is inc9rrect, you would get dx=u/du6

A T - 1 year, 11 months ago

Try it again

A T - 1 year, 11 months ago
Fidel DaSilva
Apr 4, 2021

June Lee
Mar 1, 2016

Let the function we are integrating be K. Then, K^2 = 2x + 2(x^2-12x+36)^0.5. Since our values of x range from 3 to 6, we want the negative square root, so K^2 = 2x - 2(x-6) = 12. So K = 2 (3^.5). So our antiderivative is 2 (3^.5)x, giving us an answer of 2 (3^.5)(6-3) = 6 (3^.5). Therefore, 6*3 = 18.

Satvik Choudhary
Sep 7, 2015

The title of the problem made it very easy maybe it should be changed.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...