So much going on

Calculus Level 5

g n ( x ) = x x n times x h n ( x ) = r = 0 n x r r ! \Large{g_{n} (x) = {x^{x^{{\cdots \text{n times} \cdots}^x}}}}\\ \\ \Large{h_n (x) = \displaystyle \sum_{r=0}^{n} \dfrac{x^r}{r!}}

A = lim x lim n ( g n ( x ! ) ) ! × h n ( g n ( x ! ) ) g n ( x ! ) × ( g n ( x ! ) ) ( g n ( x ! ) ) \Large {A = \lim_{x\to\infty} \lim_{n\to\infty} \dfrac{\left(g_n(x!)\right)! × h_n\left(g_n(x!)\right)}{\sqrt{g_n(x!)} × {\left(g_n(x!)\right)}^{\left(g_n(x!)\right)}}}

Evaluate A 2 \lfloor A^2 \rfloor

Details and assumptions \text{Details and assumptions} :-

  • Here n ! n! is the factorial notation , n ! = n × ( n 1 ) × ( n 2 ) × × 2 × 1 n! = n×(n-1)×(n-2)×\cdots×2×1 .
  • Here . \lfloor . \rfloor denotes the greatest integer function


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ashish Menon
Feb 8, 2018

Let g n ( x ! ) = y g_n(x!) = y .
Now, lim n h n ( y ) = 1 + y + y 2 2 ! + y 3 3 ! = e y \lim_{n\to\infty} h_n(y) = 1 \ + \ y \ + \ \dfrac{y^2}{2!} \ + \ \dfrac{y^3}{3!} \ \cdots = \ e^y .

A = lim y y ! × e y y × y y = lim y 2 π y × y e y × e y y × y y Using Stirling’s Approximation = 2 π A 2 = 6 \begin{aligned} A & = \lim{y\to \infty} \dfrac{y! × e^y}{\sqrt{y} × y^y}\\ \\ & = \lim{y\to \infty} \dfrac{\sqrt{2\pi y}×{\frac{y}{e}}^y × e^y}{\sqrt{y}×y^y} \ \text{Using Stirling's Approximation} \\ \\ & = \sqrt{2\pi}\\ \\ \therefore \lfloor A^2 \rfloor & = \color{#D61F06}{\boxed{6}} \end{aligned}

Did it the same way!!!

Aaghaz Mahajan - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...