So much inverse

Calculus Level 3

f ( x ) = arctan [ 1 + sin x + 1 sin x 1 + sin x 1 sin x ] f\left( x \right) =\arctan { \left[\, \frac { \sqrt { 1+\sin { x } } +\sqrt { 1-\sin { x } } }{ \sqrt { 1+\sin { x } } -\sqrt { 1-\sin { x } } } \, \right] }

Find the derivative of f ( x ) f(x) at x = π 4 . x = \frac\pi4.


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

1 + sin ( 2 β ) = ( sin β + cos β ) 2 = sin β + cos β {\color{#20A900}{\sqrt{1 + \sin(2β)} = \sqrt{(\sin β + \cos β)^2} = \sin β + \cos β}}

f ( x ) = arctan [ ( sin x / 2 + cos x / 2 ) + ( sin x / 2 cos x / 2 ) ( sin x / 2 + cos x / 2 ) ( sin x / 2 cos x / 2 ) ] f(x) = \arctan \begin{bmatrix} \dfrac {(\sin x/2 + \cos x/2 )+ ( \sin x/2 - \cos x/2)}{(\sin x/2 + \cos x/2) - (\sin x/2 - \cos x/2)} \end{bmatrix}

f ( x ) = arctan [ 2 sin x / 2 2 cos x / 2 ] f(x) = \arctan \begin{bmatrix} \dfrac {2\sin x/2 }{2\cos x/2} \end{bmatrix}

f ( x ) = arctan [ tan ( x 2 ) ] f(x) = \arctan \begin{bmatrix} \tan \begin{pmatrix} \dfrac x2 \end{pmatrix} \end{bmatrix}

f ( x ) = x 2 f ( x ) = 1 2 f(x) = \dfrac x2 \Rightarrow f'(x) = \dfrac 12

Hence, f ( π 4 ) = 1 2 = A B f\begin{pmatrix} \dfrac π4 \end{pmatrix} = \dfrac 12 = \dfrac AB

So, A + B = 3 A + B = \boxed{3}

Moderator note:

(January 26 2021)

This solution is currently wrong.

Well there is a error here... we require the derivative at pi/4. For x belonging to (0,pi/2) ,cos(x/2) > sin(x/2), so the expression for f(x) wont be x/2 since sqrt(x^2) = modulus(x). What we will obtain is arctan(cot(x/2)) (here) .In the end, we get f'(pi/4) = -1/2 not 1/2 as f(x) will be pi/2 - x/2

Natalia Dcruz - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...