So Small!

Calculus Level 3

0 π 4 tan x d x \large \int_0^\frac{\pi}{4}\sqrt{\tan x}\, dx

Find the value of the closed form of the above integral to 2 decimal places.

You may use a calculator for the final step of your calculation.


The answer is 0.49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sumanth R Hegde
Feb 8, 2017

Write tan θ \sqrt{\tan{\theta} } as

( tan θ + cot θ ) + ( tan θ cot θ ) 2 \dfrac{ ( \sqrt{\tan{\theta}} +\sqrt{\cot{\theta}} ) + (\sqrt{\tan{\theta}} - \sqrt{\cot{\theta}} ) }{2}

Consider I 1 = 0 π 4 cot θ + tan θ d θ 2 = 0 π 2 sin θ + cos θ d θ 2 sin θ cos θ I_1 = \displaystyle \int_0^{\large\frac{\pi}{4}}\mathrm{ \frac{\sqrt{\cot{\theta}} + \sqrt{\tan{\theta}}~d\theta}{2}} = \displaystyle \int_0^{\large\frac{\pi}{2} }\mathrm{\frac{\sin{\theta} +\cos{\theta}~d\theta}{2\sqrt{\sin{\theta}\cos{\theta}}}}

Substitute sin θ cos θ = t \sin{\theta} - \cos{\theta} = t The numerator is d t dt .The denominator can be easily expressed in terms of t t

( Hint : sin θ cos θ = 1 t 2 2 ) ( \displaystyle \text{Hint } : \sin{\theta}\cos{\theta} = \frac{ 1- t^2}{2})

Similarly for I 2 I_2 = 0 π 4 tan θ cot θ d θ 2 = 0 π 4 cos θ sin θ d θ 2 sin θ cos θ \displaystyle \int_0^{\frac{\pi}{4}}\mathrm{\frac{\sqrt{\tan{\theta}} - \sqrt{\cot{\theta}} ~d\theta}{2}} = \int_0^{\frac{\pi}{4}}\mathrm{\frac{\cos{\theta} - \sin{\theta}~d\theta}{2\sqrt{\sin{\theta}\cos{\theta}}}} , substitute sin θ + cos θ = m \sin{\theta} + \cos{\theta} = m

Required integral is I 1 + I 2 \color{#D61F06}{I_1 + I_2}

This comes out to be

ln ( 2 1 ) 2 + π 2 2 = 0.487495 \dfrac{ \ln{(\sqrt{2}-1)}}{\sqrt{2}} + \dfrac{\pi}{2\sqrt{2}} = \boxed{0.487495}

Nice trick!

Harsh Shrivastava - 4 years, 4 months ago

This is an ingenious method! Very creative!

And I thought we need to solve this problem via partial fraction decompositions.

Pi Han Goh - 4 years, 3 months ago
Mark Hennings
Feb 4, 2017

With the substitution v 2 = tan x v^2 = \tan x we obtain 0 1 4 π tan x d x = 2 0 1 v 2 d v 1 + v 4 = 1 2 0 1 ( v v 2 2 v + 1 v v 2 + 2 v + 1 ) d v = 1 2 2 [ ln ( v 2 2 v + 1 ) + 2 tan 1 ( 2 v 1 ) ln ( v 2 + 2 v + 1 ) 2 tan 1 ( 2 v + 1 ) ] 0 1 = 1 2 2 { ln ( 2 2 2 + 2 ) + 2 [ tan 1 ( 2 1 ) + tan 1 ( 2 + 1 ) ] } = 1 2 2 [ 2 ln ( 2 1 ) + 2 × 1 2 π ] = 1 2 ln ( 2 1 ) + 1 2 2 π = 0.487495 \begin{aligned} \int_0^{\frac14\pi} \sqrt{\tan x}\,dx & = 2\int_0^1 \frac{v^2\,dv}{1+v^4} \; = \; \frac{1}{\sqrt{2}}\int_0^1 \left(\frac{v}{v^2 - \sqrt{2}v + 1} - \frac{v}{v^2 + \sqrt{2}v +1}\right)\,dv \\ & = \frac{1}{2\sqrt{2}}\Big[\ln\big(v^2 - \sqrt{2}v + 1\big) + 2\tan^{-1}\big(\sqrt{2}v - 1\big) - \ln\big(v^2 + \sqrt{2}v + 1\big) - 2\tan^{-1}\big(\sqrt{2}v + 1\big) \Big] _0^1 \\ & = \frac{1}{2\sqrt{2}}\Big\{ \ln\left(\frac{2-\sqrt{2}}{2+\sqrt{2}}\right) + 2\big[\tan^{-1}(\sqrt{2}-1) + \tan^{-1}(\sqrt{2}+1)\big]\Big\} \\ & = \frac{1}{2\sqrt{2}} \Big[2\ln(\sqrt{2}-1) + 2 \times \tfrac12\pi\Big] \\ & = \tfrac{1}{\sqrt{2}}\ln(\sqrt{2}-1) + \tfrac{1}{2\sqrt{2}}\pi \; = \; \boxed{0.487495} \end{aligned}

A bit too much algebra to my liking.. But as always an amazing solution.

Anirudh Chandramouli - 4 years, 4 months ago
Ashish Gupta
Feb 12, 2017

Careful there, you need to explain why the first integral evaluates to 0 1 2 π 2 0 - \dfrac1{\sqrt2} \cdot \dfrac{-\pi}2 and not 0 1 2 + π 2 0 - \dfrac1{\sqrt2} \cdot \dfrac{{\color{#D61F06}{+}}\pi}2 because the integrand that you've found is undefined when t = 0 t= 0 .

Pi Han Goh - 4 years, 3 months ago

Log in to reply

I see your point here. The integrand maybe undefined at exactly t = 0 but while solving, I carefully put the right hand limit of the tan inverse function at x equals zero to make it = tan inverse (- infinity) = -pi/2.

Ashish Gupta - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...