Non-elementary functions with elementary proofs!

Calculus Level 5

Si ( x ) = x sin ( t ) t d t Ci ( x ) = x cos ( t ) t d t \large \text{Si}(x) = - \int_{x}^{\infty} \frac{\sin(t)}{t} \, dt \\ \large \text{Ci}(x) = - \int_{x}^{\infty} \frac{\cos(t)}{t} \, dt

The functions Si ( x ) \text{Si}(x) and Ci ( x ) \text{Ci}(x) are usually defined as above. Given that

0 sin ( x ) Si ( x ) d x + 0 cos ( x ) Ci ( x ) d x = A π B C , \large \left| \int_{0}^{\infty} \sin(x) \text{Si}(x) \, dx + \int_{0}^{\infty} \cos(x) \text{Ci}(x) \, dx \right| = \frac{A\pi^{B}}C,

where A , B , C A,B,C are all positive integers with A , C A,C coprime. Find A + B + C A + B + C .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Dec 24, 2016

If we define g ( x ) = 0 t e x t 1 + t 2 d t x > 0 g(x) \; = \; \int_0^\infty \frac{t e^{-xt}}{1 + t^2}\,dt \hspace{2cm} x > 0 then (differentiating within the integral sign) g ( x ) + g ( x ) = 0 t e x t d t = x 2 x > 0 g''(x) + g(x) \; = \; \int_0^\infty te^{-xt}\,dt \; =\; x^{-2} \hspace{2cm} x > 0 Looking for a solution of the form g ( x ) = e i x a ( x ) + e i x b ( x ) g(x) \,=\, e^{ix}a(x) + e^{-ix}b(x) , subject to the condition e i x a ( x ) + e i x b ( x ) = 0 e^{ix} a'(x) + e^{-ix}b'(x) \; = \; 0 we deduce that we require i e i x a ( x ) i e i x b ( x ) = x 2 ie^{ix} a'(x) - ie^{-ix}b'(x) \; = \; x^{-2} and hence that a ( x ) = e i x 2 i x 2 b ( x ) = e i x 2 i x 2 a'(x) \; =\; \frac{e^{-ix}}{2ix^2} \hspace{2cm} b'(x) \; = \; -\frac{e^{ix}}{2ix^2} and so a ( x ) = α 1 2 i x e i t t 2 d t b ( x ) = β + 1 2 i x e i t t 2 d t a(x) \; = \; \alpha - \frac{1}{2i}\int_x^\infty \frac{e^{-it}}{t^2}\,dt \hspace{2cm} b(x) \; = \; \beta + \frac{1}{2i}\int_x^\infty \frac{e^{it}}{t^2}\,dt so that g ( x ) = α e i x + β e i x + x sin ( t x ) t 2 d t g(x) \; = \; \alpha e^{ix} + \beta e^{ix} + \int_x^\infty \frac{\sin(t-x)}{t^2}\,dt for some constants α , β \alpha,\beta . Since g ( x ) 0 g(x) \to 0 as x x \to \infty , we deduce that α = β = 0 \alpha = \beta = 0 , and so g ( x ) = x sin ( t x ) t 2 d t g(x) \; = \; \int_x^\infty \frac{\sin(t-x)}{t^2}\,dt Integrating by parts, we see that g ( x ) = [ sin ( t x ) t ] x + x cos ( t x ) t d t = x cos ( t x ) t d t = sin x S i ( x ) cos x C i ( x ) g(x) \; =\; \Big[-\frac{\sin(t-x)}{t}\Big]_x^\infty + \int_x^\infty \frac{\cos(t-x)}{t}\,dt \; = \; \int_x^\infty \frac{\cos(t-x)}{t}\,dt \; = \; -\sin x \,\mathrm{Si}(x) - \cos x \,\mathrm{Ci}(x) (I am using the notation of this question. It is more normal to write s i ( x ) \mathrm{si}(x) here). Thus 0 ( sin x S i ( x ) + cos x C i ( x ) ) d x = 0 g ( x ) d x = 0 d t 1 + t 2 = 1 2 π \int_0^\infty \big(\sin x \,\mathrm{Si}(x) + \cos x \,\mathrm{Ci}(x)\big)\,dx \; =\; -\int_0^\infty g(x)\,dx \; = \; -\int_0^\infty \frac{dt}{1+t^2} \; = \; -\tfrac12\pi making the answer 1 + 1 + 2 = 4 1 + 1 + 2 = \boxed{4} .

First Last
Jun 17, 2017

Redefining the zone of integration:

0 x sin ( x ) sin ( t ) t d t d x = 0 0 t sin ( x ) sin ( t ) t d x d t = 0 cos ( t ) sin ( t ) t sin ( t ) t d t \displaystyle -\int_0^\infty\int_x^\infty\sin(x)\frac{\sin(t)}{t}dtdx=-\int_0^\infty\int_0^t\sin(x)\frac{\sin(t)}{t}dxdt = \int_0^\infty\frac{\cos(t)\sin(t)}{t}-\frac{\sin(t)}{t}dt

Falling a similar procedure: 0 cos ( x ) Ci ( x ) d x = 0 sin ( t ) cos ( t ) t d t \displaystyle\int_0^\infty\cos(x)\text{Ci}(x)dx=-\int_0^\infty\frac{\sin(t)\cos(t)}{t}dt

Now using the Dirichlet integral 0 sin ( x ) x d x = π 2 \displaystyle\int_0^\infty\frac{\sin(x)}{x}dx=\frac{\pi}{2} The answer becomes π 4 π 2 π 4 = π 2 \bigg|\frac{\pi}{4}-\frac{\pi}{2}-\frac{\pi}{4}\bigg|=\frac{\pi}{2}

Aareyan Manzoor
Feb 12, 2017

define two integrals: ( I 1 , I 2 ) = ( 0 sin ( x ) S I ( x ) d x , 0 cos ( x ) C i ( x ) d x ) (I_1,I_2)=\left(\int_0^\infty \sin(x) SI(x) dx,\int_0^\infty \cos(x) Ci(x) dx \right) consider the first integral: I 1 = 0 sin ( x ) S I ( x ) d x = 0 sin ( x ) x sin ( t ) t d t d x I_1= \int_0^\infty \sin(x) SI(x) dx=\int_0^\infty \sin(x) \int_\infty^x \dfrac{\sin(t)}{t}dt dx by using integration by parts a b = a b a b a = sin ( x ) a = cos ( x ) , b = x sin ( t ) t d t b = sin ( x ) x I 1 = cos ( x ) x sin ( t ) t d t 0 0 cos ( x ) sin ( x ) x d x I 1 = π 2 + 1 2 0 sin ( 2 x ) x d x = 3 π 4 \int a'b = ab-\int ab'\\ a'= \sin(x) \to a = -\cos(x), b = \int_\infty^x \dfrac{\sin(t)}{t}dt \to b' = \dfrac{\sin(x)}{x}\\ I_1 = -\cos(x) \int_\infty^x \dfrac{\sin(t)}{t}dt |_0^\infty - \int_0^\infty \dfrac{-\cos(x)\sin(x)}{x} dx\\ I_1 = \dfrac{\pi}{2} + \dfrac{1}{2} \int_0^\infty \dfrac{\sin(2x)}{x} dx= \dfrac{3\pi}{4}

similarly, I 2 = sin ( x ) x cos ( t ) t d t 0 0 cos ( x ) sin ( x ) x d x I_2 = \sin(x) \int_\infty^x \dfrac{\cos(t)}{t}dt |_0^\infty- \int_0^\infty \dfrac{\cos(x)\sin(x)}{x} dx using l'hopital rule on the first part lim x 0 sin ( x ) x cos ( t ) t d t = lim x 0 x cos ( t ) t d t csc ( x ) = lim x 0 cos ( x ) / x cos ( x ) / sin 2 ( x ) = lim x 0 sin 2 ( x ) x = 0 \lim_{x\to 0} \sin(x) \int_\infty^x \dfrac{\cos(t)}{t}dt =\lim_{x\to 0} \dfrac{\int_\infty^x \dfrac{\cos(t)}{t}dt}{\csc(x)}\\ =\lim_{x\to 0} \dfrac{\cos(x)/x}{-\cos(x)/\sin^2(x)} =-\lim_{x\to 0} \dfrac{\sin^2 (x)}{x} =0 I 2 = 0 π 2 = π 2 I_2 = 0 - \dfrac{\pi}{2}=- \dfrac{\pi}{2} I 1 + I 2 = 1 π 1 2 I_1+I_2 = \boxed{\dfrac{1\pi^1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...